Skip to main content
Log in

Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: an example with the North American genera

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braga, E., R. Zardoya, A. Meyer & J. Yen, 1999. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Marine Biology 133: 79–90.

    Article  CAS  Google Scholar 

  • Bucklin, A., B. W. Frost, J. Bradford-Grieve, L. D. Allen & N. J. Copley, 2003. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Marine Biology 142: 333–343.

    CAS  Google Scholar 

  • Bucklin, A., B. W. Frost & T. D. Kocher, 1995. Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Marine Biology 121: 655–664.

    Article  CAS  Google Scholar 

  • Bucklin, A., M. Guarnieri, R. S. Hill, A.M. Bentley & S. Kaartvedt, 1999. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive species-specific PCR. Hydrobiologia 401: 239–254.

    Article  CAS  Google Scholar 

  • Hill, R. S., L. D. Allen & A. Bucklin, 2001. Multiplexed speciesspecific PCR protocol to discriminate four N. Atlantic Calanus species, with anmtCOI gene tree for ten Calanus species. Marine Biology 139: 279–287.

    Article  CAS  Google Scholar 

  • Huys, R. & G. Boxshall, 1991. Copepod evolution. The Ray Society, London.

    Google Scholar 

  • Kelly-Borges, M. & S. A. Pomponi, 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons. Molecular Marine Biology and Biotechnology 3: 87–103.

    CAS  PubMed  Google Scholar 

  • Light, S. F., 1939. New American subgenera of Diaptomus Westwood (Copepoda, Calanoida). Transactions of the American Microscopical Society 58: 473–484.

    Google Scholar 

  • Medlin, L., H. J. Elwood, S. Stickel & M. L. Sogin, 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Ranga Reddy, Y., 1994. Copepoda:Calanoida:Diaptomidae. Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. SPB Academic Publishing, The Hague, Netherlands.

    Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.

    CAS  Google Scholar 

  • Swofford, D. L., 1998, PAUP*. Phylogenetic analysis using parsimony. in. Sinauer, Sunderland, MA.

    Google Scholar 

  • Williamson, C. E. & J. W. Reid, 2001. Copepoda. Pages 911–951 in J. H. Thorp and A. P. Covich, editors. Ecology and Classification of North American Freshwater Invertebrates. Academic, San Diego.

    Google Scholar 

  • Wilson, M. S., 1959. Calanoida. Pages 738–794 in W. T. Edmondson, editor. Fresh-water biology, 2. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thum, R.A. Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: an example with the North American genera. Hydrobiologia 519, 135–141 (2004). https://doi.org/10.1023/B:HYDR.0000026500.27949.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000026500.27949.e9

Navigation