Skip to main content
Log in

Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A study was done of the relationship between hydrographic variables and the composition, abundance, community structure and biomass spectrums of coastal phytoplankton at scales greater than 100 km on the Yucatan Peninsula (SE Gulf of Mexico). This was done during the season of greatest environmental instability in the region, the northwind season (late fall to winter). Samples were collected at stations in the west (Campeche), north (Yucatan), and east (Quintana Roo) zones of the Peninsula. Measurements were taken of temperature, salinity, dissolved oxygen, dissolved inorganic nutrients (ammonia, nitrite, nitrate and phosphate) and chlorophyll a, and samples were taken for phytoplankton analysis. The hydrographic results showed the Campeche zone as having the lowest salinity (<35 psu) values, as well as the highest inorganic nutrient and chlorophyll a values, all of which are related to continental water contributions. The Yucatan zone had the lowest temperatures and the lowest inorganic nutrient values, indicating influence from the Yucatan Current and the Gulf of Mexico. A total of 159 phytoplankton species were identified, dominated by diatoms (>80%) and dinoflagellates. Phytoplankton exhibited greater concentration, richness, equitability and diversity in Campeche, while the lowest community structure values were had in the Quintana Roo zone. The ordination analysis demonstrated that the dominant genera were the diatoms Chaetoceros, Pseudonitzschia and Thalassionema. The biomass spectrums exhibited the lowest slope in environments of higher heterogeneity, with Campeche being the most disturbed and heterogeneous zone and Quintana Roo that with the least heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. & J. Koonce, 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology 54: 1234–1246.

    Google Scholar 

  • Belgrano, A., P. Legendre, J. Dewarumez & S. Frontier, 1995. Spatial structure and ecological variation of meroplankton on the French-Belgian coast of the North Sea. Marine Ecology Progress Series 128: 43–50.

    Google Scholar 

  • Bode, A., B. Casas, E. Fernández, E. Marañon, P. Serret & M. Varela, 1996. Phytoplankton biomass and production in shelf waters off NW Spain: Spatial and seasonal variability in relation to upwelling. Hydrobiologia 341: 225–234.

    Article  Google Scholar 

  • Boyer, J., J. Fourqurean & R. Jones, 1997. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: Zones of similar influence. Estuaries 20: 743–758.

    CAS  Google Scholar 

  • Buddemeier, R. W., 1996. Groundwater discharge in the coastal zone: Final Proc. Conference LOICZ/R&S/96. Texel, The Netherlands, 179 pp.

  • Capurro, L. & J. Reid., 1972. Contributions on the physical oceanography of the Gulf of Mexico. Texas A and M Oceanographic Studies 2: 1–288.

    Google Scholar 

  • Cloern, J., 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34: 127–168.

    Article  CAS  Google Scholar 

  • Comín, F. A., 1984. Características físicas y químicas y fitoplancton de las lagunas costeras, Encañizada, Tancada y Buda (Delta del Ebro). Oecologia Aquatica 7: 79–162.

    Google Scholar 

  • Day, J., C. Hall, M. Kemp & A. Yañez-Arancibia, 1989. Estuarine Ecology. John Willey and Sons, New York, 558 pp.

    Google Scholar 

  • Denman, K. & A. Garret, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology & Oceanography 28: 801–815.

    Google Scholar 

  • Duarte, C., M. Masó & M. Merino, 1992. The relationship between mesoscale phytoplankton heterogeneity and hydrographic variability. Deep Sea Research 39: 45–54.

    Article  Google Scholar 

  • Dugdale, R., F. Wilkerson & A. Morel, 1990. Realization of new production in coastal upwelling areas: A means to compare relative performance. Limnology & Oceanography 35: 822–829.

    CAS  Google Scholar 

  • El Sayed, S., W. Sackett, L. Jeffrey, A. Saunders, P. Conger, G. Fryxell, K. Steindinger & S. Earle, 1972. Chemistry, Primary productivity, and benthic Algae of the Gulf of Mexico. In Bushnell, V.C. (ed.), Serial Atlas of the Marine Environment. Folio 22. AGU, 29 pp.

  • Estrada, M. & D. Blasco, 1979. Two phases of the phytoplankton community in the Baja California upwelling. Limnology & Oceanography 24: 1065–1080.

    Google Scholar 

  • Ferraz-Reyes, E., 1983. Estudio del fitoplancton en la cuenca Tuy-Cariaco, Venezuela. Boletin del Instituto Oceanográfico de Venezuela. Universidad de Oriente 22: 111–124.

    Google Scholar 

  • Flores T. & V. Villa, 1986. Estimación de la productividad primaria en la plataforma de la Península de Yucatán (Julio 1984). Inv. Ocean/F.Q. 3: 156–194.

    Google Scholar 

  • Franks, P., 1992. Sink or swim: accumulation of biomass at fronts. Marine Ecology Progress Series 82: 1–12.

    Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology & Oceanography 37: 1202–1220.

    Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: A case study of a plankton community in a large scale. Limnology & Oceanography 38: 112–127.

    Google Scholar 

  • Gárate-Lizárraga, I., D. Siqueiros-Beltrones & C. Lechuga-Deveze, 1990. Estructura de las asociaciones microfitoplanctónicas de la región central del Golfo de California en el otoño de 1986. Ciencias Marinas 16: 131–153.

    Google Scholar 

  • Gowen, R. & S. Boomfild, 1996. Chlorophyll standing crop and phytoplankton production in the western Irish Sea during 1992 and 1993. Journal of Plankton Research 18: 1735–1751.

    Google Scholar 

  • Hambright, D. & T. Zohary, 2000. Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnology & Oceanography 41: 110–122.

    Google Scholar 

  • Harris, G., 1986. Phytoplankton Ecology. Chapman and Hall, London, 384 pp.

    Google Scholar 

  • Hasle, S., 1978. The inverted microscope method. In Sournia 1978. Phytoplankton Manual. SCOR-Unesco, 337 pp.

  • Herrera-Silveira, J.A., 1996. Salinity and nutrients in a tropical coastal lagoon with groundwater discharges to the Gulf of Mexico. Hydrobiologia 324: 165–176.

    Article  Google Scholar 

  • Herrera-Silveira, J. A. & F. A. Comín, 2000. An Introductory account of the types of aquatic ecosystems of Yucatan Peninsula (SE Mexico). In: Munawar, M., S. G. Lawrence, I. F. Munawar & D. F. Malley (eds), Ecovision World Monographs Series. Aquatic Ecosystems of Mexico: Status and Scope. Backhuys Publ., Leiden: 213–227.

    Google Scholar 

  • Herrera-Silveira, J.A. & J. Ramírez-Ramírez, 1993. Effects of Poliphenols (Tannins) in the growth of phytoplankton. Limnology & Oceanography 41: 1018–1023.

    Google Scholar 

  • Hillebrand, H., C. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Igniatiades, L., 1969. Annual cycle, species diversity and succesion of phytoplankton in lower Saronicos Bay, Aegean Sea. Marine Biology 3: 196–200.

    Article  Google Scholar 

  • Igniatiades, L., 1994. Species dominance and niche breath in “bloom” and “non-bloom” phytoplankton populations. Oceanologica Acta 17: 89–96.

    Google Scholar 

  • Johnson, R. & D. Wichern, 1992. Applied Multivariate Statistical Analysis, 3rd ed. Prentice-Hall Int., 642 pp.

  • Kokkinakis S. & P. Wheeler, 1987. Nitrogen uptake and phytoplankton growth in coastal upwelling regions. Limnology & Oceanography 32: 1112–1123.

    Article  CAS  Google Scholar 

  • Kumpf, H., K. Steidinger & K. Shermann, 1999. The Gulf of Mexico Large Marine Ecosystem. Asessment. Sustainability and Management. Blackwell Science, New York, 705 pp.

    Google Scholar 

  • Lapointe, B., J. Connel & G. Garret, 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry 10: 289–307.

    CAS  Google Scholar 

  • Legendre, P. & M. Fortin, 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam, 853 pp.

    Google Scholar 

  • Lindenschmidt, K-E. & I. Chorus, 1998. The effect of water column mixing on phytoplankton succession, diversity and similarity. Journal of Plankton Research 20: 1927–1951.

    Google Scholar 

  • Longhurst, A., 1981. Analysis of Marine Ecosystems. Academic Press, London, 741 pp.

    Google Scholar 

  • Longsdale, D., 1996. Effects of zooplankton grazing on phytoplankton size-structure and biomass in the lower Hudson River estuary. Estuaries 19: 874–889.

    Google Scholar 

  • Lovejoy, S., W. Currie, Y. Tessier, M. Claereboudt, J. Roff & D. Scertzer, 2001. Universal multifractals and ocean patchiness: Phytoplankton physical fields and coastal heterogeneity. Journal of Plankton Research 23: 117–141.

    Article  Google Scholar 

  • McIntire C. & W. Overton, 1971. Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology 52: 758–777.

    Google Scholar 

  • Mann, K. & J. Lazier, 1991. Dynamics of Marine Ecosystems. Blackwell Scientific Publications. Oxford, 466 pp.

    Google Scholar 

  • Malone, T. & H. Ducklow, 1990. Microbial biomass in the coastal plume of Chesapeake Bay: Phytoplankton-Bacterioplankton relationships. Limnology & Oceanography 35: 296–312.

    CAS  Google Scholar 

  • Margalef, R., 1957. Fitoplancton de las costas de Puerto Rico. Investigación Pesquera VI: 39–52.

    Google Scholar 

  • Margalef, R., 1961. Hidrografía y fitoplancton de un área marina de la costa meridional de Puerto Rico. Investigación Pesquera 18: 33–96.

    Google Scholar 

  • Margalef, R., 1969a. Grupos de especies asociadas en el fitoplancton del mar Caribe (NE Venezuela). Investigación Pesquera 33: 287–232.

    Google Scholar 

  • Margalef, R., 1969b. Composición específica del fitoplancton de la costa catalano-levantina (Mediterráneo occidental) en 1962-1967. Investigación Pesquera 33: 345–380.

    Google Scholar 

  • Margalef, R., 1976. Distribución horizontal del fitoplancton marino a escala media (1 a 10 km), ilustrada con un ejemplo del área de afloramiento del NW de Africa. Mem. Real Acad. Cienc. Art., Barcelona, 779.

    Google Scholar 

  • Margalef, R., 1980. Ecología. Ed. Omega, Barcelona, 951 pp.

    Google Scholar 

  • Margalef, R., 1993. Teoría de los sistemas ecológicos. Publications Universitat de Barcelona, Barcelona, 290 pp.

    Google Scholar 

  • Martinez-Lopez, B. & A. Parés-Sierra, 1998. Circulación del Golfo de México inducida por mareas, viento y la corriente de Yucatan. Ciencias Marinas 24: 65–93.

    Google Scholar 

  • Maul, G., 1996. Climatic Change in the Intra-Americas Sea. Ed. Arnold, London, 273 pp.

    Google Scholar 

  • Merino, M., 1986. Aspectos de la circulación costera superficial del Caribe mexicano con base en observaciones utilizando tarjetas de deriva. An. Inst. Cienc. del Mar y Limnol-UNAM 13: 31–46.

    Google Scholar 

  • Merino, M., 1997. Upwelling on the Yucatan Shelf: Hydrographic evidence. Journal of Marine Systems 13: 101–121.

    Article  Google Scholar 

  • Minas, H. and M. Minas, 1986. Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnology & Oceanography 31: 1182–1206.

    CAS  Google Scholar 

  • Monbet, Y., 1992. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal. Estuaries 15: 563–571.

    CAS  Google Scholar 

  • Obregón, M., 1980. Plancton y bentos del Banco de Campeche, Golfo de México. Revista de Investigaciones Pesqueras 5: 1–27.

    Google Scholar 

  • Parsons, T., Y. Maita & C. Lally, 1984. A Manual of Chemical and Biological Methods of Seawater Analysis. Pergamon Press, Oxford, 173 pp.

    Google Scholar 

  • Rodríguez, J. & M. Mullan, 1986. Diel and interannual variation of size distribution of oceanic zooplanktonic biomass. Ecology 67: 215–222.

    Google Scholar 

  • Rodriguez, J., J. Tintoré, J. Allen, J. Blanco, D. Gomis, A. Roul, J.Ruiz, V. Rodriguez, F. Echevarría & F. Jimenez-Gomez, 2001. Mesoscale motion and the size structure of phytoplankton in the ocean. Nature 410: 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Gortarez, M. J., E. Batllori-San Pedro, V. Olvera-Viascan & S. Dominguez, 1983. Productividad primaria en la región sureste del Golfo de México (Mayo,1982). Secretaría de Marina. Dirección de Investigaciones Oceanográficas 237-275.

  • Siegel, D., 1998. Resource competition in a discrete enviroment: Why are plankton distributions paradoxical?. Limnology & Oceanography 43: 1133–1146.

    Article  Google Scholar 

  • Souissi, S., O. Yahia-Kefi & M. Yahia, 2000. Spatial characterization of nutrient dynamics in the Bay of Tunis (south-western Mediterranean) using multivariate analyses: consequences for phyto-and zooplankton distribution. Journal of Plankton Research 22: 2039–2059.

    Article  Google Scholar 

  • Sprules, W. & A. Goyke., 1994. Size-based structure and production in the pelagia of Lakes Ontario and Michigan. Canadian Journal of Fisheries and Aquatic Science 51: 2603–2611.

    Google Scholar 

  • Steidinger, K. & L. Walker, 1983. Marine Plankton Life Cycle Strategies. CRC Press, Florida, 157 pp.

    Google Scholar 

  • Strickland, J. & T. Parsons, 1972. A practical handbook of seawater analysis. Journal of Fisheries Research Board of Canada Bulletin 167: 1–310.

    Google Scholar 

  • ter Braak, C.J., 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Thiebaux, M. & L. Dickie, 1993. Structure of the Body-Size spectrum of the biomass in aquatic ecosystems: A consequence of allometry in Predator-Prey interactions. Canadian Journal of Fisheries and Aquatic Science 50: 1308–1317.

    Article  Google Scholar 

  • Thunnel, R., C. Pride, P. Ziveri, F. Muller-Karger, C. Sancetta & D. Murray, 1996. Plankton response to physical forcing in the Gulf of California. Journal of Plankton Research 18: 2017–2026

    Google Scholar 

  • Travers, M., 1971. Diversité du microplancton du Golfe de Marseille en 1964. Marine Biology 8: 308–343.

    Article  Google Scholar 

  • Wasmund, N., M. Zalewski & S. Busch, 1999. Phytoplankton in large river plumes in the Baltic Sea. ICES Journal of Marine Science 56: 23–32.

    Article  Google Scholar 

  • USEPA, 1999. Ecological condition of estuaries in the Gulf of Mexico. EPA 620-R-998-004. US. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troccoli Ghinaglia, L., Herrera-Silveira, J.A. & Comín, F.A. Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico. Hydrobiologia 519, 85–102 (2004). https://doi.org/10.1023/B:HYDR.0000026487.78497.b6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000026487.78497.b6

Navigation