Skip to main content
Log in

Stratification analysis of the Óhalász Ox-bow of the River Tisza (Kisköre Reservoir, Hungary)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Vertical samplings of the Óhalász Ox-bow of the River Tisza situated within the Kisköre Reservoir were carried out on 6 occasions during 2000–2002 from different depths of the open water above the deepest point of the riverbed. The possible formation of a discontinuity layer was studied. Beside the measurements of physical and chemical water parameters the quantitative estimation of the microorganisms taking part in the transformation of inorganic and organic materials was performed. Although the greatest depth of the former river course is just 5 m, a summer stratification was typical as was proved by in-situ measurements and laboratory analyses: an anaerobic water body was formed under 2–2.5 m depth. The discontinuity layer was clearly proved by an intensive peak in the chlorophyll level, the sulphate-sulphide chemocline, an abrupt dropping of the water-temperature, etc. Interesting was also the dominance of phototrophs again in the deeper anoxic water masses, near the bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronstein, M., M. Schutz, G. Hauska, E. Padan & Y. Shahak, 2000. Cyanobacterial sulphide-quinone reductase: cloning and heterologous expression. J. Bacteriol. 182: 3336–3344.

    Google Scholar 

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Google Scholar 

  • Cohen, Y., B. B. Jorgensen, N. P. Revsbech & R. Poplawski, 1986. Adaptation to hydrogen sulphide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol. 51: 398–407.

    Google Scholar 

  • De Wit, R. & H. van Gemerden, 1989. Growth responses of the cyanobacterium Microcoleus chthonoplastes with sulphide as an electron donor. In Cohen, Y. & E. Rosenberg (eds), Microbial Mats: Physiological Ecology of BenthicMicrobial Communities. Am. Soc. Microbiol., Washington: 320–325.

  • Gorzó, Gy., M. Reskóné Nagy & K. Kupainé Pálfi, 1998. A környezet anyagforgalmában résztvevõ baktériumok. (Bacteria participating in the cycles of elements.) In Némedi, L. (ed.), Környe Zetbakteriológia. (Enviromental bacteriology) KGI, Budapest: 83–86.

    Google Scholar 

  • Grigorszky, I., J. Padisák, G. Borics, C. Schnitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O.F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.

    Google Scholar 

  • Grigorszky, I., S. Nagy, L. Krienitz, K. T. Kiss, M. M. Hamvas, A. Tóth, G. Borics, C. Máthé, B. Kiss, G. Borbély, G. Dévai & J. Padisák, 2000. Seasonal succession of phytoplankton in a small oligotrophic oxbow and some consideration to the PEG model. Verh. int. Ver. theor. angewan. Limnol. 27: 152–156.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Jørgensen, B. B., Y. Cohen & N. P. Revsbech, 1986. Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl. Environ. Microbiol. 51: 408–417.

    Google Scholar 

  • Kleeberg, A., 2003. Re-assessment of Wundsch's (1940) ‘H2OOscillatoria-Lake’ type using the eutrophic Lake Scharmützel (Brandenburg, NE Germany) as an example. Hydrobiologia 501: 1–5.

    Google Scholar 

  • MSZ 12750-18., 1974. Felszíni vizek vizsgálata. Nitrátion meghatározása. (Testing of surface water. Determination of nitrate ion.), Budapest.

  • MSZ EN 26461-2., 1994. Vízmin?oség. A szulfidredukáló anaerobok (clostridiumok) spóráinak kimutatása és számlálása. 2. rész: membránsz?uréses módszer (Water quality. Detection and enumeration of the spores of sulfitereducing anaerobes. Part 2: Method by membrane filtration. EN 26461-2:1993), Budapest.

  • MSZ EN ISO 6222., 2000. Vízmin?oség. Tenyészthetõ mikroorganizmusok számának meghatározása. Telepszám meghatározás agar táptalaj beoltásával. (Water quality. Enumeration of culturable micro-organisms. Colony count by inoculation of a nutrient agar culture medium. ISO 6222.1999), Budapest.

  • Ohle, W. (ed.), 1983. The Ecology of Aquatic Micro-Organisms. Die Binnengewässer XXVIII: 1–59.

  • Padisák, J. & C.S. Reynolds, 2003. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia 506– 509: 1–11.

    Google Scholar 

  • Sentsova, O., K. A. Nikitina & M. V. Gusev, 1975. Characteristics of oxygen metabolism in the obligate phototrophic blue-green alga Anabaena variabilis in darkness. Mikrobiologia 44: 283–288.

    Google Scholar 

  • Sokal, R. R. & F. J Rohlf (eds), 1981. Biometry. Ferrman, San Francisco: 49–89.

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby & F. W. Valois, 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33: 940–954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teszárné Nagy, M., Márialigeti, K., Végvári, P. et al. Stratification analysis of the Óhalász Ox-bow of the River Tisza (Kisköre Reservoir, Hungary). Hydrobiologia 506, 37–44 (2003). https://doi.org/10.1023/B:HYDR.0000008640.58965.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008640.58965.17

Navigation