Skip to main content
Log in

Shallow lakes: the absolute, the relative, the functional and the pragmatic

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This short essay will give a brief overview of the role of depth in the ecosystemic function of inland waters and the properties that make them `shallow' or `deep'. In accord with the title, we will consider absolute and relative measures but because neither always succeeds in predicting the properties of shallow lakes, we venture a slightly more pragmatic appreciation of ecological function in shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous, 1971. Proceedings of the International Conference of the Conservation of Wetlands and Waterfowl. Ramsar, Iran.

  • Barbosa, F. A. R. & J. Padisák, (in press). The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verh. int. Ver. theor. angewan. Limnol. 28.

  • Belyea, L. R. & J. Lancaster, 1999. Assembly rules within a contingent ecology. Oikos 86: 402–416.

    Google Scholar 

  • Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. gesamt. Hydrobiol. 80: 535–561.

    Google Scholar 

  • Bloesch, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. J. Mar. Freshwater Res. 46: 295–304.

    Google Scholar 

  • Boulton, A. J. & M. A. Brock, 1999. Australian Freshwater Ecology. Processes and Management. Gleneagles Publishing, Glen Osmond: 300 pp.

    Google Scholar 

  • Bradt, P., M. Urban, N. Goodman, S. Bissell & I. Spiegel, 1999. Stability and resilience in benthic macroinvertebrate assemblages. Hydrobiologia 403: 123–133.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. Bioscience 38: 764–769.

    Google Scholar 

  • Chorus I. & G. Schlag, 1993. Importance of intermediate disturbances for species diversity of phytoplankton in two very different Berlin lakes. Hydrobiologia 249: 67–92.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Google Scholar 

  • Cowardin, L. M., V. Carter & F. C. Colet, 1977. Classification of Wetland and Deep-Water habitats of he United States (An operational Drapt). US Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Denman, K. & A. E. Gargett, 1983. Time and space scales of vertical mixng and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801–815.

    Google Scholar 

  • Elliot, W. P., 1958. The growth of atmospheric internal boundary layer. Trans. Am. Geophys. Union 39: 1048–1054.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1994. Ecology and evolution in anoxic worlds. Oxford University Press, Oxford.

    Google Scholar 

  • Finlay, B. J. & S. C. Maberly, 2000. Microbial diversity in priest Pot: a productive pond in the English Lake District. Freshwater Biological Association, Ambleside.

    Google Scholar 

  • Ford, D. E. & H. Stefan, 1980. Thermal predictions using integral energy model. J. Hydrol. Div., Am. Soc. Chem. Eng. 106: 39–55.

    Google Scholar 

  • Gorham, E. & F. M. Boyce, 1989. Influence of lake surface area and depth upon thermal stratification and the depth of the summer thermocline. J. Great Lakes Res., 15: 233–245.

    Google Scholar 

  • Grigorszky, I., S. Nagy, L. Krienitz, K. T. Kiss, M.M. Hamvas, A. Tóth, G. Borics, C. Máthé, B. Kiss, G. Borbély, G. Dévai & J. Padisák, 2000. Seasonal succession of phytoplankton in a small oligotrophic oxbow and some consideration to the PEG model. Verh. int. Ver. theor. angewan. Limnol. 27: 152–156.

    Google Scholar 

  • Grigorszky, I., J. Padisak, G. Borics, C. Schnitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O.F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.

    Google Scholar 

  • Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.

    Google Scholar 

  • Gulati, R. D., E. H. R. R. Lammens, M-L. Meijer & E. Van Donk (eds), 1990. Biomanipulation – Tool for Water Management. Hydrobiologia 200/2001: 628 pp.

  • HajdÚ, L., 1974. A comparision between the algaflorae of two fishponds. Acta Bot. Acad. Sci. Hung. 20: 249–253.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion hypothesis. Science 131: 1292–1297.

    Google Scholar 

  • Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143.

    Google Scholar 

  • Holling, C. S., 2001. Understanding the complexity of economic, ecological and social systems. Ecosystems 4: 390–405.

    Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–110.

    Google Scholar 

  • Imberger, J. & P. F. Hamblin, 1982. Dynamics of lakes, reservoirs and cooling ponds. Annu. Rev. Fluid Mech. 14: 153–187.

    Google Scholar 

  • Juhász-Nagy, P., 1993. Notes on compositional diversity. Hydrobiologia 249: 173–182.

    Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. J. Veget. Sci. 3: 157–164.

    Google Scholar 

  • Kelt, D. A., M. L Taper & P. L. Meserve, 1995. Assessing the impact of competition in community assembly. Ecology 76: 1283–1296.

    Google Scholar 

  • Kleeberg, A., 2003. Re-assessment of Wundsch's (1940) ‘H2S Oscillatoria-Lake’ type using the entrophic Lake Scharmützel (Brandenburg, NE Germany) as an example. Hydrobiologia 501: 1–5.

    Google Scholar 

  • Kondoh, M., 2001. Unifying the relationships of species richness to productivity and disturbance Proc. Royal Soc. London B, 268: 269–271.

    Google Scholar 

  • Leland, H.V., 2003. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river. Hydrobiologia 506–509: 247–255.

    Google Scholar 

  • Lewis, W. M., 1983. A revised classification of lakes based on mixing. Can. J. Fish. Aqua. Sci. 40: 1779–1787.

    Google Scholar 

  • Likens, G. E. & M. B. Davis, 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, U.S.A.: an initial report. Verh. int. Ver. theor. angewan. Limnol. 19: 982–993.

    Google Scholar 

  • Mackey, R. L. & D. J. Currie, 2000. A re-examination of the expected effects of disturbance on diversity. Oikos 88: 483–493.

    Google Scholar 

  • Matsumura-Tundisi, T., J. G. Tundisi, O. Rocha & M. do C. Calijuri, 1997. The ecological significance of the metalimnion in lakes of the middle Rio Doce Valley. In Tundisi, J. G. & Y. Saijo (eds), Limnological Studies on the Rio Doce Valley Lakes, Brazil. Brazilian Academy of Sciences, Rio de Janeiro: 37–390.

    Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands, 2nd ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Moss, B., S. McGowan & L. Carvalho, 1994. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland meres. Limnol. Oceanogr. 39: 1020–1029.

    Google Scholar 

  • Nixon, S. W., 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol. Oceanogr. 33: 1005–1025.

    Google Scholar 

  • Noss, R. F., 1996. Conservation of biodiversity at the landscape scale. In Szaro, R. C. & D. W. Johnston (eds), Biodiversity in Managed Landscapes; Theory and Practice. Oxford University Press, New York: 574–589.

    Google Scholar 

  • Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Arch. Hydrobiol. Adv. Limnol. 58: 175–199.

    Google Scholar 

  • Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.

    Google Scholar 

  • Padisák, J., C. S. Reynolds & U. Sommer, 1993. The intermediate disturbance hypothesis in phytoplankton ecology. Kluwer, Dordrecht. (Reprinted from Hydrobiologia, 249).

    Google Scholar 

  • Patalas, K., 1984. Mid-summer mixing depths of lakes of different latitudes. Verh. int. Ver. theor. angewan. Limnol. 22: 97–102.

    Google Scholar 

  • Payne, A. I., 1986. The ecology of tropical lakes and rivers. John Wiley & Sons, Chichester.

  • Proulx, M. & A. Mazmuder, 1998. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79: 2581–2592.

    Google Scholar 

  • Reynolds, C. S., 1979. The limnology of the eutrophic meres of the Shropshire-Cheshire Plain. Field Stud. 5: 93–173.

    Google Scholar 

  • Reynolds, C. S., 1989. Physical determinants of seasonal change in the species composition of phytoplankton. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Brock-Springer, Madison: 9–56.

    Google Scholar 

  • Reynolds, C. S., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Ergebn. Limnol. 35: 13–31.

    Google Scholar 

  • Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.

    Google Scholar 

  • Reynolds, C. S., 1997. On the vertical distribution of phytoplankton in the middle Rio Doce Vale lakes. In Tundisi, J. G. Y. & Saijo (eds), Limnological Studies on the Rio Doce Vallley Lakes, Brazil. Brazilian Academy of Sciences, Rio de Janeiro: 227–241.

    Google Scholar 

  • Reynolds, C. S., 2001. Emergence in pelagic communities. Scientia Marina 65 (suppl. 2): 5–30.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.

    Google Scholar 

  • Reynolds, C. S., J. G. Tundisi & K. Hino, 1983a. Observations on a metalimnetic Lyngbya population in a stably stratified tropical lake (Lagoa Carioca, Eastern Brasil). Arch. Hydrobiol. 97: 7–17.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983b. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. J. Plankton Res. 5: 203–234.

    Google Scholar 

  • Rojo, C., E. Ortega-Mayagoitia & M. Alvarez Cobelas, 2000. Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean? Hydrobiologia 424: 133–139.

    Google Scholar 

  • Sand-Jensen, K., 1987. Environmental control of bicarbonate use among freshwater and marine macrophytes. In Crawfors, R. M. (ed.), Plant Life in Aquatic and Amphibious Habitats. Blackwell, Oxford: 99–112.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.

    Google Scholar 

  • Tátrai, I., J. Oláh, V. Józsa, B. J. Kawiecka, K. Mátyás & G. Paulovits, 1997. Biomass dependent interactions in pond experiments: responses of lower trophic levels to fish manipulations. Hydrobiologia 345, 117–129.

    Google Scholar 

  • Teszárné-Nagy, M., K. Márialigeh, P. Végvári, E., Csépes & I. Bancsi, 2003. Stratification analysis of the Óhalász Ox-bow of the River Tisza (Kisköre Reservoir, Hungary). Hydrobiologia 506–509: 37–44.

    Google Scholar 

  • Vicente, E. & R. M. Miracle, 1988. Physicochemical and microbial stratificationin a meromictic karstic lake of Spain. Verh. int. Ver. theor. angewan. Limnol. 23: 522–529.

    Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: phytoplankton ecophysiology in a permanently ice-covered lake. Ecology 62: 1215–1224.

    Google Scholar 

  • Weiher, E., P. A. & Keddy, 1995. Assembly rules, null models and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Google Scholar 

  • Weyhenmeyer, G. A. & J. Bloesch, 2001. The pattern of particle flux variability in Swedish and Swiss lakes. Sci. Total Environ. 266: 69–78.

    Google Scholar 

  • Zmudzinski, L., R. Kornijów, J. Bolatek, A. Górniak, K. Olanczuk-Neyman, A. Peczalska & K. Korzenniewski, 2002. Slownik hydrobiologiczny. Terminy, pojecia, interpretacje. Widawnictwo Naukowe, PWN, Warszawa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padisák, J., Reynolds, C.S. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506, 1–11 (2003). https://doi.org/10.1023/B:HYDR.0000008630.49527.29

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008630.49527.29

Navigation