Skip to main content
Log in

Bacterial activities in shallow lakes – a comparison between extremely acidic and alkaline eutrophic hard water lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bacterial abundance and activity were investigated by DAPI-staining and 3H-thymidine incorporation method in samples from a very shallow, hypertrophic hard water lake and from acidic mining lakes in north-eastern Germany. Bacterial cell numbers in the acidic lakes were about one order of magnitude less than in the hypertrophic natural lake but are probably underestimated due to methodological problems. Bacterial activity in the shallow acidic mining lakes was high and comparable with that of hypertrophic hard water lakes. By application of microautoradiography, we checked whether these high thymidine uptake rates in acidic waters were caused by artefacts due to the complex chemistry. It was shown by this qualitative analysis that in addition to small cocci and rods, large filamentous bacteria in the shallow acidic lakes also contribute to the high thymidine uptake. We observed clearly lower bacterial activities in deep and dimictic acidic mining lakes. This phenomenon cannot be explained by the trophic state alone. It is assumed that shallowness in combination with the groundwater input, intense sediment–water interaction, the poor zooplankton colonization and photolytic processes favours the development of large bacterial cells with high specific activity in shallow acidic mining lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, R. T., 1986. Thymidine incorporation as a measure of bacterial production in lakes. Acta University Uppsala. 43, Uppsala: 31 pp.

  • Beulker, C., D. Lessmann & B. Nixdorf, 2003. Aspects of phytoplankton succession and spatial distribution in an acidic mining lake (Plessa 117, Germany). Acta Oecol. 24: 25–31.

    Article  Google Scholar 

  • Boylen, C. W., M. O. Shick, D. A. Roberts & R. Singer, 1983. Microbiological survey of Adirondack lakes with various pH values. Appl. Environ. Microbiol. 45: 1538–1544.

    PubMed  CAS  Google Scholar 

  • Deneke, R. & B. Nixdorf, 1999. On the occurrence of clear-water phases in relation to shallowness and trophic state: a comparative study. Hydrobiologia 408/409: 251–262.

    Article  Google Scholar 

  • Deneke, R., 2000. Review of rotifers and crustaceans in highly acidic environments of pH values < 3. Hydrobiologia 433: 167–172. Deutsche Einheitsverfahren zur Wasser-, Abwasser und Schlammuntersuchung, Fachgruppe Wasserchemie i. d. GDCh in Gemeinschaft mit dem NAW im DIN (eds), VCH Verlagsges., Weinheim, 1976–1998.

    Article  Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic acidification of lakes. In Geller, W., H. Klapper & W. Salomons (eds), Abatement of Geogenic Acidification in Mining Lakes. Springer Verlag, Berlin: 3–14.

    Chapter  Google Scholar 

  • Gross S. & E. I. Robbins, 2000. Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433: 91–109.

    Article  Google Scholar 

  • Hahn, M. W., E. R. B. Moore & M. G. Höfle, 1999. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65: 25–35.

    PubMed  CAS  Google Scholar 

  • Johnson, D. B., 1998. Biological abatement of acid mine drainage: The role of acidophilic protozoa and other indigenous microflora. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer-Verlag, Berlin: 285–301.

    Chapter  Google Scholar 

  • Kamjunke, N., H. Krumbeck, C. Beulker & J. Tittel, 2002. Bakterielle Produktion in sauren Tagebauseen. In Deneke, R. &, B. Nixdorf, (eds), Gewässerreport (Nr.7) Tagungsband zum Workshop "Biogene Alkalinisierung", BTUC-AR 3/2002. Aktuelle Reihe, 113–118.

  • Köcher, B. & B. Nixdorf, 1993. Bakterien und autotrophes Picoplankton in natürlichen und künstlichen Seen der Region Berlin/ Brandenburg-Erste Ergebnisse. Deutsche Gesellschaft für Limnologie, Erweiterte Zusammenfassungen, 1993: 284–288.

    Google Scholar 

  • Lenhard, B. & Ch. Steinberg, 1984. Limnochemische und limnobiologische Auswirkungen der Versauerung von kalkarmen Oberflächengewässern. Inform. Bayer. Landesamt für Wasserwirtschaft 4/84.

  • Lessmann, D., A. Fyson & B. Nixdorf, 2003. Experimental eutrophication of a shallow acidic mining lake and effects on the phytoplankton. Hydrobiologia 506–509: 753–758.

    Article  Google Scholar 

  • Lessmann, D. & B. Nixdorf, 2000. Acidification control of phytoplankton diversity, spatial distribution and trophy in mining lakes. Verh. int. Ver. theor. angew. Limnol. 27: 2208–2211.

    CAS  Google Scholar 

  • Lessmann, D., R. Deneke, R. Ender, M. Hemm, M. Kapfer, H. Krumbeck, K. Wollmann & B. Nixdorf, 1999. Lake Plessa 107 (Lusatia, Germany) – an extremely acidic shallow mining lake. Hydrobiologia 408/409: 293–299.

    Article  Google Scholar 

  • Mills, A. L., P. E. Bell & A. T. Herlihy, 1989. Microbes, sediments, and acidified water: the importance of biological buffering. In Rao, S. S. & B. Raton (eds), Acid Stress and Aquatic Microbial Interactions. CRC Press Inc., Florida: 1–19.

    Google Scholar 

  • Mischke, U., 2003. Cyanbacteria association in shallow polytrophic lakes: Influence of environmental factors. Acta Oecol. 24: 11–23.

    Article  Google Scholar 

  • Nixdorf, B. & H. Arndt, 1993. Seasonal changes in the plankton dynamics of a eutrophic lake including the microbial web. Int. Rev. gesamt. Hydrobiol. 78: 403–410.

    Article  Google Scholar 

  • Nixdorf, B. & R. Deneke, 1997. Why 'very shallow' lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343: 269–284.

    Article  Google Scholar 

  • Nixdorf, B., D. Lessmann & C. E. W. Steinberg, 2003. The importance of chemical buffering for pelagic and benthic colonization in acidic waters. Water, Air Soil Poll. 3, 27–46.

    Article  CAS  Google Scholar 

  • Nixdorf, B., H. Krumbeck, J. Jander & C. Beulker, 2003. Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oecol. 24: 281–288.

    Article  Google Scholar 

  • Nixdorf, B., J. Rücker & B. Köcher, and R. Deneke, 1995. Erste Ergebnisse zur Limnologie von Tagebaurestseen in Brandenburg unter besonderer Berücksichtigung der Besiedlung im Pelagial. In Geller, W. & G. Packroff (eds), Abgrabungsseen-Risiken und Chancen. G. Fischer Verlag, Stuttgart: 39–52.

    Google Scholar 

  • Nixdorf, B., U. Mischke & D. Lessmann, 1998a. Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369/370: 315–327.

    Article  Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998b. Ecological potential for planktonic development and food web interactions in extremly acidic mining lakes in Lusatia. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer Verlag, Berlin, Heidelberg: 147–167.

    Chapter  Google Scholar 

  • OECD, Eutrophication of Waters – Monitoring, Assessment and Control, Organization for Economic Cooperation and Development, Paris, 1982.

  • Packroff, G., 2000. Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157–166.

    Article  Google Scholar 

  • Pernthaler, J., T. Posch, K. Šimek, J. Vrba, R. Amann & R. Psenner, 1997. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63: 596–601.

    PubMed  CAS  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting microflora. Limnol. Oceanogr. 25: 943–948.

    Article  Google Scholar 

  • Reynolds, C. S., 1997 Vegetation processes in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology 9. Ecology Institute, Nordbünte, Germany.

    Google Scholar 

  • Scheider, W. & P. Dillon, 1976. Neutralization and fertilization of acidified lakes near Sudbury, Ontario. Water Poll. Res. Can. 11: 93–100.

    CAS  Google Scholar 

  • Šimek, K., J. Vrba, J. Pernthaler, T. Posch, P. Hartman, J. Nedoma & R. Psenner, 1997. Morphological and composition shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63: 587– 595.

    PubMed  Google Scholar 

  • Šimek, K., P. Kojecká, J. Nedoma, P. Hartman, J. Vrba & J. R. Dolan, 1999. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44: 1634–1644.

    Article  Google Scholar 

  • Sorokin, Y. I., 1999. Aquatic microbial ecology. Backhuys Publishers, Leiden: 248 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nixdorf, B., Jander, J. Bacterial activities in shallow lakes – a comparison between extremely acidic and alkaline eutrophic hard water lakes. Hydrobiologia 506, 697–705 (2003). https://doi.org/10.1023/B:HYDR.0000008623.73250.c8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008623.73250.c8

Navigation