Skip to main content
Log in

Phosphorus-binding in iron-rich sediments of a shallow Reservoir: spatial characterization based on sonar data

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

An echo sounding device coupled with a differential GPS was applied for a spatial survey of the shallow Spremberg Reservoir to characterize areas of similar sediment composition and phosphorus (P) mobility to help elucidate its influence on water quality. Forty three intact sediment cores were taken to determine dry weight (DW) and total P. Four areas were differentiated based on the sonar and dry weight data. From each of the areas, specific surface area, P sorption characteristics and P pools by means of a sequential P extraction as well as the total and diagenetically reactive iron were determined. A high P sorption capacity of up to 7.4 mg P g−1 DW could be determined at up to 180 mg Fe g−1DW and high proportions of iron-bound P in the surface sediment. The P release rates calculated from pore water profiles were extremely low. The high P binding capacity, the low P mobility and the short water residence time have favoured the improvement of water quality in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner, R. A., 1980. Early diagenesis. A theoretical approach. Princeton University Press, New York: 241 pp.

    Google Scholar 

  • Boström, B., I. Ahlgren & R. Bell, 1985. Internal nutrient loading in an eutrophic lake, reflected in seasonal variation of some sediment parameters. Verh. int. Ver. theor. angew. Limnol. 22: 3335–3339.

    Google Scholar 

  • Brunauer, S., P. H. Emmett & E. Teller, 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319.

    Google Scholar 

  • Cholwek, G., J. Bonde, X. Li, C. Richards & K. Yin, 2000. Processing RoxAnn sonar data to improve its categorization of lake bed surficial substrates. Mar. Geophys. Res. 21: 409–421.

    Google Scholar 

  • Dzombak, D. A. & F. M. M. Morel, 1990. Surface complexation modelling: hydrous ferric oxides. Wiley, New York: 393 pp.

    Google Scholar 

  • Gabellone, N. A. & C. Guisande, 1989. Relationship between texture and fractions of inorganic phosphorus in the surface sediment of a reservoir. Aquat. Sci. 51: 306–316.

    Google Scholar 

  • Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer, Berlin: 316 pp.

    Google Scholar 

  • Hantke, H., G. Schlungbaum & K. Storch, 1996. Möglichkeiten der Anwendung eines speziell entwickelten Flachwasserecholotsystems zur Binnen-und Küstengewässercharakterisierung sowie zur Kontrolle und Darstellung der im Wasserkörper und Oberflächensediment durchgeführten Probenahme-, Meß-und Sanierungsarbeiten. Deutsche Gesellschaft für Limnologie. Tagungsbericht 1996: 630–634.

  • Heidenreich, M. & A. Kleeberg, 2001. Wasser-und Sedimentqualität der Talsperre Spremberg. In Krumbeck, H. & U. Mischke (eds), Gewässerreport (Nr. 6): Entwicklungen im Scharmützelseegebiet und angewandte Probleme des Gewässerschutzes. BTUC-AR 6/2001: 81–90.

  • Hesslein, R. H., 1976. An in situ sampler for close interval porewater studies. Limnol. Oceanogr. 21: 912–914.

    Google Scholar 

  • Hupfer, M., R. Gächter & R. Giovanoli, 1995. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 57: 305–324.

    Google Scholar 

  • Lijklema, L., 1980. Interaction of Orthophosphate with Iron(III) and Aluminium Hydroxides. Environ. Sci. Technol. 537–541.

  • Marsden, S., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139–162.

    Google Scholar 

  • Perkins, R. G. & G. J. C. Underwood, 2000. Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrients by in situ nutrient addition. Wat. Res. 34: 713–724.

    Google Scholar 

  • Psenner, R., R. Puscko & M. Sager, 1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten – Versuch einer Definition ökologisch wichtiger Fraktionen. Arch. Hydrobiol. Suppl. 70: 111–155.

    Google Scholar 

  • Pyman, M. A. & A. M. Posner, 1978. The surface area of amorphous mixed oxides and their relation to potentiometric titration. Journal of Colloid and Interface Science 66: 85–94.

    Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.

    Google Scholar 

  • Thamdrup, B., H. Fossing & B. B. Jørgensen, 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta 58: 5115–5129.

    Google Scholar 

  • Uhlmann, D., M. Hupfer & L. Paul, 1995. Longitudinal gradients in the chemical and microbial composition of the bottom sediment in a channel reservoir (Saidenbach R., Saxony). International Revue der gesamten Hydrobiologie 80: 15–25.

    Google Scholar 

  • Zhang, C., L. Wang, G. Li, S. Dong, J. Yang & X. Wang, 2002. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl. Geochem. 17: 59–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidenreich, M., Kleeberg, A. Phosphorus-binding in iron-rich sediments of a shallow Reservoir: spatial characterization based on sonar data. Hydrobiologia 506, 147–153 (2003). https://doi.org/10.1023/B:HYDR.0000008621.44435.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008621.44435.23

Navigation