Skip to main content
Log in

The role of zooplankton grazing in the formation of `clear water phase' in a shallow charophyte-dominated lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Chara-dominated shallow eutrophic Lake Prossa (Estonia), the collapse of spring phytoplankton community occurred in late May after which both primary production (PP) and phytoplankton biomass (B&pinf;) stayed at a very low level. By mid-June the Secchi depth had increased up to 2.6 m indicating the achievement of the `clear water phase', which persisted thoughout the rest of the vegetation period. The biomass of `edible' phytoplankton formed on average 53% of the total phytoplankton biomass, and the share of herbivorous zooplankton was on average 61% of the total zooplankton biomass. In spring zooplankton removed daily 27% of the total B&pinf; and 29% of PP by grazing while in summer these values rarely exceeded 5%. Zooplankton grazing was responsible for the decrease of `edible' (<31 μm) phytoplankton after its spring peak as well as for maintaining its biomass at a very low level during the whole vegetation period. Depletion of mineral forms of nitrogen and phosphorus that occurred most probably because of the development of charophytes by the end of May supported the collapse of the whole phytoplankton community and kept the water clear throughout the summer and autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balushkina, E. V. & G. G. Winberg, 1979. Relation between body mass and length in planktonic animals. In Winberg, G. G. (ed.), Obshchiye Osnovy Izucheniya Vodnykh Ekosistem. Nauka Leningrad: 169–172 (in Russian).

    Google Scholar 

  • Bern, L., 1990. Postcapture particle size selection by Daphnia cucullata (Cladocera). Limnol. Oceanogr. 35: 923–926.

    Google Scholar 

  • Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwat. Biol. 44: 185–197.

    Google Scholar 

  • Christoffersen, K. & S. Bosselmann, 1997. Zooplankton growth, grazing and interaction with fish. Freshwat. Biol. 24: 162–182.

    Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518–527.

    Google Scholar 

  • DeMott, W. R., 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 125–134.

    Google Scholar 

  • Dokulil, M., 1988. Seasonal and spatial distribution of cryptophycean species in the deep, stratifying, alpine lake Mondsee and their role in the food web. Hydrobiologia 161: 185–201.

    Google Scholar 

  • Ghadouani, A., B. P. Alloul, Y. Zhang & E. E. Prepas, 1998. Relationships between zooplankton community structure and phytoplankton in two lime-treated eutrophic hardwater lakes. Freshwat. Biol. 39: 775–790.

    Google Scholar 

  • Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekologia Polska (Polish J. Ecol.) Seria A: 664–708.

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim: 419 pp.

    Google Scholar 

  • Hosper, H. & M-L. Meijer, 1993. Biomanipulation, will it work for your lake? A simple test for the assessment of chances for clear-water, following drastic fish-stock reduction in shallow, eutrophic lakes. Ecol. Eng. 2: 63–72.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 1999. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408/409: 217–231.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, O. Sortkjaer, E. Mortensen & P. Kristensen, 1990. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Sobygard, Denmark. Hydrobiologia 191: 149–164.

    Google Scholar 

  • Kasprzak, P., R. C. Lathrop & S. R. Carpenter, 1999. Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. J. Plankton Res. 21: 2161–2174.

    Google Scholar 

  • Lampert, W. & B. E. Taylor, 1985. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.

    Google Scholar 

  • Mäemets, A., 1977. Eesti NSV järved ja nende kaitse. Valgus, Tallinn: 202.

    Google Scholar 

  • Mayer, J., M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342/343: 165–174.

    Google Scholar 

  • Meijer, M.-L. & H. Hosper, 1997. Effects of biomanipulation in the large and shallow Lake Wolderwijd, The Netherlands. Hydrobiologia 342/343: 335–349.

    Google Scholar 

  • Meijer, M.-L., 2000. Alternative equilibria in shallow lakes: In Biomanipulation in the Netherlands. 15 years of experience. Ministry of Transport, PublicWorks andWater Management. Institute for Inland Water Management andWasteWater Treatment (RIZA). Lelystad, The Netherlands: 13–24.

    Google Scholar 

  • Nõges, T. & P. Nõges, 1998. Primary production of Lake Võrtsjärv. Limnologica 28.: 29–40.

    Google Scholar 

  • Nõges, P., L. Tuvikene, T. Feldmann, I. Tõnno, H. Künnap, H. Luup, J. Salujõe & T. Nõges, 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia 506–509: 51–58.

    Google Scholar 

  • Pluntke, T. & H.-P. Kozerski, 2003. Particle trapping on leaves and the bottom in simulated submerged plant stands. Hydrobiologia 506–509: 375–581.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge.

  • Ruggiero, A., A. G. Solimini & G. Carchini, 2003. Nutrient and chlorophyll a in eutrophic mountain lakes with contrasting macrophyte coverage. Hydrobiologia 506–509: 657–663.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Arch. Hydrobiol. 8: 71–76.

    Google Scholar 

  • Søndergaard, M. & B. Moss, 1997. Impact of Submerged Macrophytes on Phytoplankton in Shallow Freshwater Lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecol. Studies 131: 115–132.

  • Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring primary production in the sea. Journal du Conseil permanent international pour l'exploration del la mer 18: 117–140.

    Google Scholar 

  • Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology – Succession in Plankton Communities. Springer-Verlag, Berlin, Germany: 107–169.

    Google Scholar 

  • Studenikina, E. I. & M. M. Cherepakhina, 1969. Srednii ves osnovnykh form zooplanktona Azovskogo moray (Mean weight of basic zooplankton forms of the Azov Sea). Gidrobiologicseszky Zhurnal 5: 89–91 (in Russian).

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteil. int. Ver. theor. angew. Limnol. 9: 1–38.

    Google Scholar 

  • Vanni, M. J. & Jo. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 35: 697–709.

    Google Scholar 

  • Zurek, R. & H. Bucka, 1994. Algal size classes and phytoplankton – zooplankton interacting effects. J. Plankton Res. 16: 583–601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tõnno, I., Künnap, H. & Nõges, T. The role of zooplankton grazing in the formation of `clear water phase' in a shallow charophyte-dominated lake. Hydrobiologia 506, 353–358 (2003). https://doi.org/10.1023/B:HYDR.0000008579.99831.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008579.99831.57

Navigation