Skip to main content
Log in

Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Submerged plants are thought to negatively affect phytoplankton crops in the temperate zone by a number of mechanisms, including nutrient and light limitation, and enhancement of top-down control by offering diurnal refuge for zooplankton against visual predation, and by favouring piscivores. In 1997–1998, Lake Blanca (34° 54′ S, 54° 50′ W), a yellow-brownish shallow lake in Uruguay, suffered a severe water level reduction (associated with El Niño events between 1995–1997) that resulted in a massive fish kill and an extensive colonisation by Egeria densa. A clear water phase is established nowadays in the system (Secchi depth > 1 m), despite a fish community restricted to two small omnivorous–planktivorous fish: Jenynsia multidentata and Cnesterodon decemmaculatus. We studied the effects of E. densa on bottom-up and top-down controls on phytoplankton by comparing physical, chemical, and biological characteristics between submerged plant beds and sites without plants, from autumn 2000 to autumn 2001. The water column had low to intermediate nutrient concentrations, and phytoplankton community was highly diverse with a low to moderate biomass (mean Chl-a = 10.6 μg l−1). The water level, recovered during the study, promoted a dilution process that explained the temporal pattern of many chemical variables. Macrophyte PVI represented 28–39% of the lake volume (annual mean biomass = 174 g DW m−2). The zooplankton community was generally dominated by copepods in terms of biomass. Fish and zooplankton were significantly associated with submerged plant beds. In spite of the high biomass and density of omnivorous-planktivorous fish (115 kg ha−1, 13 ind m−2), zooplankton strongly affected phytoplankton spatial and temporal variation. The most important differences of algal biomass between zones coincided with a high herbivorous zooplankton biomass and/or with plants occupying the entire water column during the low level period. Medium-sized zooplankton declined with fish reproduction. The consequent stronger predation of juvenile fish seemed to decrease macrophyte efficiency as a zooplankton refuge in summer. E. densa bottom-up mechanisms would also be present, contributing to maintaining clear water. Besides the usually described nutrient and light limitation, the internal production of humic substances could enhance the observed top-down effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1985. Standard methods for the examination of water and wastewater. APHA-AWWA-WPCF, 16th edition, Washington, 1265 pp.

  • Arvola, L., P. Eloranta, M. Järvinen, J. Keskitalo & A.-L. Holopainen, 1999. Phytoplankton. In Keskitalo, J. & P. Eloranta (eds), Limnology of Humic Waters. Backhuys Publishers, Leiden: 131–171.

    Google Scholar 

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broads. Freshwat. Biol. 22: 71–87

    Google Scholar 

  • Barko, J. & R. Smart, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238.

    Google Scholar 

  • Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies Vol. 131. Springer-Verlag, New York: 197–214.

    Google Scholar 

  • Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. Camargo, 1999. Aquatic macrophytes distribution in relation to water and sediment conditions in the ItaipÚ Reservoir, Brazil. Hydrobiologia 415: 147–154.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzing, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Canfield, D. E. Jr., K. A. Langeland, M. J. Maceina, W. T. Haller, J. V. Shireman & J. R. Jones, 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci. 40: 1713–1718.

    Google Scholar 

  • Canfield, D. E. Jr., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41: 497–501.

    Google Scholar 

  • Collins, P., 1999. Feeding of Palaemonetes argentinus (Decapoda: Palaemonidae) from an oxbow lake of the Paraná River, Argentina. J. Crustacean Biol. 19: 485–492.

    Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506–509: 23–27.

    Google Scholar 

  • Feijoó, C., F. Momo, C. Bonetto & N. Tur, 1996. Factors influencing biomass and nutrient content of the submerged macrophytes Egeria densa Planch. in a pampasic stream. Hydrobiologia 341: 21–26.

    Google Scholar 

  • Field, J. G., K. R. Clarke & R. M. Warwick, 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. – Progress Series 8: 37–52.

    Google Scholar 

  • García-Rodríguez, F., N. Mazzeo, P. Sprechmann, D. Metzeltin, F. Sosa, H. C. Treutler, M. Renom, B. Scharf & C. Gaucher, 2002. Paleolimnological assessment of human impacts in Lake Blanca, SE Uruguay. J. Paleolimnol. 28: 457–468.

    Google Scholar 

  • Getsinger, K. & C. Dillon, 1984. Quiescence, growth and senescence of Egeria densa in Lake Marion. Aquat. Bot. 20: 329–338.

    Google Scholar 

  • Hakanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, New York, 316 pp.

    Google Scholar 

  • Haramoto, T. & I. Ikusima, 1988. Life cycle of Egeria densa Planch., an aquatic plant naturalized in Japan. Aquat. Bot. 30: 389–403.

    Google Scholar 

  • Hessen, D. O. & L. J. Tranvik (eds), 1998. Aquatic Humic Substances: Ecology and Biogeochemistry, Ecological Studies Vol. 133. Springer-Verlag, Berlin, 352 pp.

    Google Scholar 

  • Hillebrand, H., C-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Google Scholar 

  • Jacobsen, L., M. R. Perrow, F. Landkildehus, M. Hjørne, T. L. Lauridsen & S. Berg, 1997. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343: 197–205.

    Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard and K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies Vol. 131. Springer-Verlag, New York: 91–114.

    Google Scholar 

  • Koroleff, F., 1970. Direct determination of ammonia in natural water as indophenol-blue. International Conference in the Exploration of the Sea. C.M. 1969/C9. ICES. Information on techniques and methods for sea water analysis. Interlaboratory Report 3: 19–22.

    Google Scholar 

  • Lauridsen, T., L. J. Pedersen, E. Jeppesen, Ma. Søndergaard, 1996. The importance of macrophytes bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294.

    Google Scholar 

  • Müller, R. & O. Widemann, 1955. Die Bestimmung des Nitrat-Ions in Wasser. Von Wasser 22: 247.

    Google Scholar 

  • Müllin, J. B. & J. P. Riley, 1955. The spectrophotometric determination of silicate-silicon in natural waters with special reference to sea water. Analytica Chimica Acta 12: 162–170.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Google Scholar 

  • Nusch, E., 1980. Comparisons of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.

    Google Scholar 

  • Paggi, J. & S. De Paggi. 1974. Primeros estudios sobre el zooplancton de las aguas lóticas del Paraná medio. Physis 33: 94–114.

    Google Scholar 

  • Perrow, M. R., A. J. Jowitt & L. Zambrano, 1996. Sampling fish communities in shallow lowland lakes: point sample electric fishing vs. electric fishing within stop-nets. Fish. Manag. Ecol. 3: 303–313.

    Google Scholar 

  • Perrow, M. R., A. J. Jowitt, J. H. Stansfield & G. L. Phillips, 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia 395/396: 199–210.

    Google Scholar 

  • Persson, L. & L. B. Crowder, 1998. Fish-habitat interactions mediated via ontogenetic niche shifts. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies Vol. 131. Springer-Verlag, New York: 3–23.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. De Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Review. J. Plankton Res. 24: 417–428.

    Google Scholar 

  • Ruggiero, A., A. G. SOlimini & G. Carchini, 2003. Nutrient and chlorophyll a temporal patterns in eutrophic mountain ponds with contrastng macrophyte coverage. Hydrobiologia 506–509: 657–663.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.

    Google Scholar 

  • Salas, H. & P. Martino, 1990. Metodologías simplificadas para la evaluación de eutrofización en lagos cálidos tropicales. CEPIS/HPE/OPS, Lima: 82 pp.

  • Sarvala, J., P. Kankaala, P. Zingel & L. Arvola, 1999. Zooplankton. In Keskitalo, J. & P. Eloranta (eds), Limnology of HumicWaters. Backhuys Publishers, Leiden: 173–191.

    Google Scholar 

  • Senesi, N., T. M. Miano, M. R. Provenzano & G. Brunetti, 1989. Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origins. Sci. Total Environ. 81–82: 143–156.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Kluwer Academic Publishers, Dordrecht: 356 pp.

    Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & Ma. Søndergaard, 1995. Impact of submerged macrophytes on fish–zooplankton– phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255–270

    Google Scholar 

  • Sommer, U., 1988. Some size relationships in phytoflagellated motility. Hydrobiologia 161: 125–131.

    Google Scholar 

  • Søndergaard, Ma. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies Vol. 131. Springer-Verlag, New York: 115–132.

    Google Scholar 

  • St. John, H., 1961. Monograph of the genus Egeria Planchon. Darwiniana 12: 293–307.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–476.

    Google Scholar 

  • Underwood, A. J., 1997. Experiments in Ecology. Cambridge University Press, Cambridge: 504 pp.

    Google Scholar 

  • Ñtermöhl, H., 1958. Zür Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteil. int. Ver. theor. angew. Limnol. 9: 1–38.

    Google Scholar 

  • Valderrama, J., 1981. The simultaneous analysis of total N y P in natural waters. Mar. Chem. 10: 1009–1022.

    Google Scholar 

  • van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Wat. Sci. Technol. 32: 197–206.

    Google Scholar 

  • Wojtal, A., P. Frankiewicz, K. Izydorczyk & M. Zalewski, 2003. Horizontal migration of zooplankton in a littoral zone of the lowland Sulejow Reservoir (Central Poland). Hydrobiologia 506–509: 339–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzeo, N., Rodríguez-Gallego, L., Kruk, C. et al. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506, 591–602 (2003). https://doi.org/10.1023/B:HYDR.0000008571.40893.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008571.40893.77

Navigation