Skip to main content
Log in

On the limnology of Lake Baringo (Kenya): II. Pelagic primary production and algal composition of Lake Baringo, Kenya

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Primary production and algal composition were studied in the shallow, highly turbid tropical freshwater Lake Baringo (Kenya). The lake's primary productivity was found to be very low when compared to other neighbouring Rift Valley lakes. The mean value of daily gross primary production was 0.56 g O2 m−2 d−1 with a range of 0.22 – 0.70 g O2 m−2 d−1. The study showed that this lake's primary production is strongly influenced by the inorganic turbidity but not the self-shading of algae as observed in the neighbouring soda and alkaline lakes. The lake has a high aphotic:photic zone ratio of 19, thus leading to a low light adapted phytoplankton community capable of vertical movement. This was shown by a uniform chlorophyll-a concentration at night and a gradient with higher values near the water surface observed during day time, too. Mean chlorophyll-a concentration was 55 μg l−1. Lake Baringo is characterised by only low diversity of algae and cyanobacteria, the latter being the major group of phytoplankton in this lake. Few green algae and diatoms were recorded during this study, growing for the most part in gelatinous sheaths of the blue-greens (strategy to get some light), on the stones near the shores of the lake and attached to the macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beadle, L. C., 1932. Scientific results of the Cambridge Expedition to the East African Lakes 1930–1. 4. The waters of some East African Lakes in relation to their fauna and flora. J. Linnean Soc. Lond. (Zool.) Vol. 38: 157–211.

    Google Scholar 

  • Bourrelly, P., 1970 Les algues déau douce. Tome III: Les algues bleues et rouges, Les Eugléniens, Peridiniens et Cryptomonadines. Ed. Boubée, Paris: 512 pp.

    Google Scholar 

  • Bourrelly, P., 1972. Les algues d'eau douce. Tome I: Les algues vertes. Ed. Boubée, Paris: 572 pp.

    Google Scholar 

  • Coesel, P. F. M., 1983. De Desmidiaceeen Van Nederland. Deel 2. Fam. Closteriaceae. Wetenschappelijke Mededelingen van de Koninklijke Nederlandse Natuurhistorische Vereniging.

  • Ganf, G. G., 1974. Phytoplankton biomass and distribution in a shallow eutrophic lake (Lake George, Uganda). Oecologia 16: 9–29.

    Google Scholar 

  • Ganf, G. G. & A. B Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proc. R. Soc. Lond. B184: 321–346.

    Google Scholar 

  • Grobbelaar, J. U., 1984. Phytoplankton productivity in a shallow turbid impoundment, Wuras Dam. Verh. int. Ver. theor. angew. Limnol. 22: 1594–1601.

    Google Scholar 

  • Grobbelaar, J. U. & Stegmann, 1976. Availability to algae of N. & P. adsorbed on suspended solids in turbid waters of the Amazon River. Arch. Hydrobiol. 96: 302–316.

    Google Scholar 

  • Hart, R. C., 1986. Zooplankton abundance, community structure and dynamics in relation to inorganic turbidity, and their implications for a potential fishery in subtropical Lake le Roux, South Africa. Freshwat. Biol. 16: 351–371.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline lakes: ecology and geochemical implications. Limnol. Oceanogr. 18: 53–71.

    Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining Chlorophyls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194

    Google Scholar 

  • Jenkin, P. M., 1936. Report on the Percy Sladen Expedition to some Rift Valley lakes in Kenya in 1929. V11. Summary of the ecological results, with special reference to the alkaline lakes. Ibid. Ser.10, 18: 133–181.

    Google Scholar 

  • Kallqvist, T., 1987. Primary production and phytoplankton in Lake Baringo and Lake Naivasha, Kenya. Norwegian institute for water research report: 59 pp.

  • Kiplagat, W. K., 1989. Phytoplankton and physicochemical dynamics of Lake Baringo. M.Sc. Thesis. Kenyatta University. Nairobi, Kenya. Komárek, J. & B. Fott, 1983. Chlorophyceae (Grünalgen); Ordnung: Chlorococcales. In Huber-Pestalozzi, G. (ed.), Das Phytoplankton des Süßwassers, Heft 7/1. Schweitzerbart'sche Verlagsbuchhandlung, Stuttgart: 1044 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, Teil 1: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/1. G. Fischer Verlag, Stuttgart-New York: 876 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/2. G. Fischer Verlag, Stuttgart-New York: 596 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Centrales, Fragilariaceae, Eunotiaceae, Teil 3: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/3. G. Fischer Verlag, Stuttgart-New York: 576 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, Teil 4: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/4. G. Fischer Verlag, Stuttgart-New York: 437 pp.

    Google Scholar 

  • Lind, O. T, R. Doyle, D. S. Vodopich & B. g Trotter,. 1992. Clay Turbidity: Regulation of phytoplankton production in large, nutrient-rich tropical lake. Limnol. Oceanogr. 37: 549–565.

    Google Scholar 

  • Melack, J. M. & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743–755.

    Google Scholar 

  • Melack, J. M., 1976. Primary productivity and fish yields in tropical lakes. Trans. Am. Fish. Soc. 105: 575–580.

    Google Scholar 

  • Melack, J. M., 1979a. Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.

    Google Scholar 

  • Melack, J. M., 1979b. Photosynthetic rates in four tropical African fresh waters. Freshwat. Biol. 81: 71–85.

    Google Scholar 

  • Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters: monitoring, assessment and control.-(Bearbeiter: Vollenweider, R. A. & J. Kerekes), OECD, Paris. Oliver, R. L. & G. G. Ganf, 2000. Frshwater blooms. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, The Netherlands: 669 pp.

    Google Scholar 

  • Patterson, G. & K. W. Kiplagat, 1995. The influence of the diel climatic cycle on the depth-time distribution of phytoplankton and photosynthesis in a shallow equatorial lake (Lake Baringo, Kenya). Hydrobiologia 304: 1–8.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press. Cambridge: 384 pp.

    Google Scholar 

  • Ross, R., 1955. The algae of the East African Great lakes. Verh. int. Ver. theor. angew. Limnol. XII: 320–326.

    Google Scholar 

  • Schwoerbel, J., 1994. Methoden der Hydrobiologie, Süßwasserbiologie. Gustav Fischer Publisher: 387 pp.

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Verh. int. Ver. theor. angew. Limnol. 19: 214–243.

    Google Scholar 

  • Talling, J. F. & D. Driver, 1961. Some problems in the estimation of chlorophyll-a in phytoplankton. In proccedings of the conference on primary productivity measurement, marine and freshwater, held at University of Hawaii, August 21–Sept. 6, 1961.

  • Talling, J. F. & J. Lemoalle, 1998. Ecological dynamics of tropical inland waters. Cambridge University Press: 441 pp.

  • Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  • Tang, E. P. Y., R. Tremblay & W. F. Vincent, 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? In Lee, R. E., 1999. Phycology 3rd Edition. Cambridge University Press. Cambridge: 614 pp.

    Google Scholar 

  • Vollenweider, R. A., 1969. A manual on methods for measuring primary production in Aquatic environments. IBP Handbook No. 12: 51–97. Blackwell Scientific Publications, Oxford, 2nd ed. 1972.

    Google Scholar 

  • Wetzel, R. G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verh. int. Ver. theor. angew. Limnol. 21: 337–349

    Google Scholar 

  • Whitton, B. A. & M. Potts, 2000. Introduction to Cyanobacteria. In Whitton, B. A. & M. Potts (eds), 2000.The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, The Netherlands: 669 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schagerl, M., Oduor, S. On the limnology of Lake Baringo (Kenya): II. Pelagic primary production and algal composition of Lake Baringo, Kenya. Hydrobiologia 506, 297–303 (2003). https://doi.org/10.1023/B:HYDR.0000008562.97458.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008562.97458.d1

Navigation