Skip to main content
Log in

Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the triggers for some cyanobacteria of the Nostocales and Stigonematales orders to produce specialised reproductive cells termed akinetes, is very important to gain further insights into their ecology. By improving our understanding of their life cycle, appropriate management options may be devised to control the formation of these cells, and therefore the potential bloom inoculum which they are thought to provide, may be reduced. This study investigated the effect of chemical (phosphorus limitation), and environmental variables (temperature shock) on akinete differentiation in the freshwater cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). From the preliminary results, it is suggested that the availability of phosphorus and changes in temperature were a necessary requirement for the formation of akinetes in this particular strain of C. raciborskii. In the four phosphorus treatments investigated (0, 3, 38 and 75 μg l−1 P), only the two higher treatments produced akinetes (approximately 220 ml−1). When the first akinetes were observed in the 38 and 75 μg l−1 P treatments, filterable reactive phosphorus (FRP) concentrations in the medium were approximately 22 and 52 μg l−1 P, respectively, indicating that there was no phosphorus limitation. In the temperature shock experiment, akinetes were observed in the 15 and 20 °C treatments. However, akinetes were degraded (pale yellow colour, limited swelling and shrivelled edges) and in much lower concentrations, which was thought to be a result of the daily temperature shock. We suggest that the formation of akinetes in C. raciborskii (AWT 205/1) can be triggered by an initial temperature shock and that phosphorus is a necessary requirement to allow further growth and full development of akinetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, S. C. & V. Singh, 2000. Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure. Folia Microbiol. 45: 439–446.

    Google Scholar 

  • Baker, P. D. & D. Bellifemine, 2000. Environmental influences on akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms. Hydrobiologia 427: 65–73.

    Google Scholar 

  • Chorus, I. & L. Mur, 1999, Preventative Measures. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria inWater. A Guide to Their Public Health Consequences, Monitoring and Management. E & FN Spon, London and New York: pp 416.

    Google Scholar 

  • Fay, P., J. A. Lynn & S. C. Majer, 1984. Akinete development in the planktonic blue-green alga Anabaena circinalis. Br. Phycol. J. 19: 163–173.

    Google Scholar 

  • Gorzó, G., 1987. Fizikai és kémiai faktorok hatása a Balatonban előforduló heterocisztás cianobaktériumok spóráinak csírázására. Hidrológiai Közlöny 67: 127–133.

    Google Scholar 

  • Gorzó, G., 1985. A Balaton üledékébõl kitenyészthetõ planktonikus heterocisztás cianobaktériumok. Hidrológiai Közlöny 6: 357–359.

    Google Scholar 

  • Hardin, S. C. & R. W. Fisher, 1995. Characterization of akinete differentiation in the cyanobacterium Anabaena azollae. Curr. Microbiol. 31: 265–269.

    Google Scholar 

  • Kovács, A. W., E. Koncz & L. Vörös, 2003. Akinete abundance of N2-fixing cyanobacteria in sediment of Lake Balaton. Hydrobiologia 506–509: 181–188.

    Google Scholar 

  • Lawrence, I., M. Bormans, R. Oliver, G. Ransom, B. Sherman, P. Ford & N. Schofield, 2000. Factors controlling algal growth and composition in reservoirs. Albury, Cooperative Research Centre for Freshwater Ecology: pp. 59.

  • Li, R., M. Watanabe & M. M. Watanabe, 1997. Akinete formation in planktonic Anabaena spp. (cyanobacteria) by treatment with low temperature. J. Phycol. 33: 576–584.

    Google Scholar 

  • Martin, E., 1990. A concise dictionary of biology. Oxford University Press, New York: pp. 260.

    Google Scholar 

  • Padisák, J., 2003. Estimation of minimum sedimentary inoculum (akinete) pool of cylindrospermopsis raciborskii: A morphology and life-cycle based method. Hydrobiologia 502: 389–394.

    Google Scholar 

  • Pandey, R. K., 1989. Induction of akinete formation in Nodularia spumigena by temperature. J. Basic Microbiol. 29: 477–480.

    Google Scholar 

  • Rai, A. K. & G. P. Pandey, 1981. Influence of Environmental stress on the germination of Anabaena vaginicola akinetes. Ann. Bot. 48: 361–370.

    Google Scholar 

  • Sarma, T. A., G. Ahuja & J. I. S. Khattar, 2000. Effect of nutrients and aeration on O2 evolution and photosynthetic pigments of Anabaena torulosa during akinete differentiation. Folia Microbiol. 45: 434–438.

    Google Scholar 

  • Sarma, T. A. & J. I. S. Khattar, 1992. Phosphorus deficiency, nitrogen assimilation and akinete differentiation in the cyanobacterium Anabaena torulosa. Folia Microbiol. 37: 223–226.

    Google Scholar 

  • Shafik, H. M., L. Vörös, P. Spröber, M. Présing & A. W. Kovács, 2003. Some special morphological features of Cylindrospermopsis racibonrskii (isolated from Lake Balaton, Hungary) in batch and continuous cultures. Hydrobiologia 506–509: 163–167.

    Google Scholar 

  • Sili, C., A. Ena, R. Materassi & M. Vincenzini, 1994. Germination of desiccated aged akinetes of alkaliphilic cyanobacteria. Arch. Microbiol. 162: 20–25.

    Google Scholar 

  • Sutherland, J. M., M. Herdman & W. D. P. Stewart, 1979. Akinetes of the cyanobacterium Nostoc PCC 7524: Macromolecular composition, structure and control of differentiation. J. Gen. Microbiol. 115: 273–287.

    Google Scholar 

  • Thompson, A. S., J. C. Rhodes & I. Pettman, 1988. Natural environmental research council culture collection of algae protozoa – catalogue of strains. Ambleside, Freshwat. Biol. Assoc. (U.K.): pp 22.

  • van Dok, W. & B. T. Hart, 1996. Akinete differentiation in Anabaena circinalis (Cyanophyta). J. Phycol. 32: 557–565.

    Google Scholar 

  • Wildman, R. B., J. H. Loescher & C. L. Winger, 1975. Development and germination of akinetes of Aphanizomenon flos-aquae. J. Phycol. 11: 96–104.

    Google Scholar 

  • Wolk, C. P., 1965. Control of Sporulation in a Blue-green Alga. Dev. Biol. 12: 15–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D., O'Donohue, M., Shaw, G. et al. Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia 506, 175–180 (2003). https://doi.org/10.1023/B:HYDR.0000008536.01716.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008536.01716.1a

Navigation