, Volume 504, Issue 1–3, pp 167–175 | Cite as

Rotifer fecundity in relation to components of microbial food web in a eutrophic reservoir

  • Miloslav Devetter
  • Jaromír Sed'a


The relationship among rotifers and their potential food sources such as bacteria, heterotrophic nanoflagelates and algae were examined in the eutrophic Římov reservoir. The egg ratio of five rotifer species (Polyarthra spp., Keratella cochlearis, K. quadrata, Kellicottia longispina and Synchaeta spp.) was estimated and related to the concentration of food particles. Generally, the highest egg ratio was found during the spring time, before the clear water phase, although the densities of some species reached their highest numbers in summer. All investigated food sources were found to have a significant relationship to rotifer egg ratio. The fecundity of all species, except Synchaeta, depend on chlorophyll-a. The Monod curve of food-fecundity relationship reflects that K. cochlearis and P. dolichoptera have high affinities to lower concentrations of chl-a. This is in contrast to K. longispina and K. quadrata, which maximized their egg ratio under higher food concentrations. The two components of the microbial food web (bacterial carbon and HNF) were correlated with fecundity but only for K. cochlearis. The seasonal differences in food-fecundity relationships for K. cochlearis andK. longispina indicated that there might be differential food preferences of these two species during the season.

bacteria chlorophyll-a egg ratio heterotrophic nanoflagelates Keratella cochlearis Monod equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255: 231–246.Google Scholar
  2. Bogdan, K. G., J. J. Gilbert P. L. Starkweather, 1980. In situ clearance rates of planktonic rotifers. Hydrobiologia 73: 73–77.Google Scholar
  3. Bogdan, K. G.J. J. Gilbert, 1982. Seasonal patterns of feeding by natural-populations of keratella, polyarthra, and bosmina – clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr. 27(5): 918–934.Google Scholar
  4. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian J. Zool. 24: 419–456.Google Scholar
  5. Buikema, A. L., J. D. Miller & W. H. Yongue, 1978. Effects of algae and protozoans on the dynamics of Polyarthra vulgaris. Verh. int. Ver. Limnol. 20: 2395–2399.Google Scholar
  6. Ciros-Perez, J., M. J. Carmona M. Serra, 2001. Resource competition between sympatric sibling rotifer species. Limnol. Oceanogr. 46: 1511–1523.Google Scholar
  7. Devetter, M., 1998. Influence of environmental factors on the rotifer assemblage in an artificial lake. Hydrobiologia 387: 171–178.Google Scholar
  8. Edmondson, W. T., 1960. Reproductive rates of Rotifers in natural populations. Mem. Ist. ital. Idrobiol. 12: 21–77.Google Scholar
  9. Edmondson, W. T., 1964. The rate of egg production by rotifers and copepods in natural populations as controlled by food and temperature. Verh. int. Ver. Limnol. 15: 675.Google Scholar
  10. Edmondson, W. T., 1965. Reproductive Rate of Planctonic Rotifers as Related to Food and Temperature in Nature. Ecol. Monogr. 35: 61–111.Google Scholar
  11. Gilbert, J. J.K. G. Bogdan, 1981. Selectivity of Polyartha and Keratella for flagellate and aflagelate cells. Verh. int. Ver. Limnol. 21: 1515–1521.Google Scholar
  12. Gilbert, J. J.J. D. Jack, 1993. Rotifers as Predators on Small Ciliates. Hydrobiologia 255: 247–253.Google Scholar
  13. Herzig, A., 1983. Comparative studies on the relationship between temperature and duration of embrionic development of rotifers. Hydrobiologia 104: 237–246.Google Scholar
  14. Hofmann, W.M. G. Höfle, 1993. Rotifer population-dynamics in response to increased bacterial biomass and nutrients – a mesocosm experiment. Hydrobiologia 255: 171–175.Google Scholar
  15. Jurgens, K., S. A. Wickham, K. O. Rothhaupt B. Santer, 1996. Feeding rates of macro-and microzooplankton on heterotrophic nanoflagellates. Limnol. Oceanogr. 41: 1833–1839.Google Scholar
  16. Koste, W., 1978. Rotatoria. Die Radertiere Mitteleuropas. Ein Bestimmungswerk begrundet von Max Voigt. 2. Stuttgart, Borntrager.Google Scholar
  17. Likens, G. E.J. J. Gilbert, 1970. Notes on quantitative sampling of natural populations of planktonic rotifers. Limnol. Oceanogr. 15: 816–820.Google Scholar
  18. Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  19. Merriman, J. L.K. L. Kirk, 2000. Temporal patterns of resource limitation in natural populations of rotifers. Ecology 8: 141–149.Google Scholar
  20. Mohr, S.R. Adrian, 2002. Effects of Brachionus calyciflorus and brachionus rubens on a manipulated freshwater microbial community. J. Plankton Res. 24: 25–31.Google Scholar
  21. Monod, J., 1950. La technique de culture continue; Theorie et aplications. Annales Institute Pasteur 79: 390–410.Google Scholar
  22. Ooms-Wilms, A. L., 1991. Ingestion of fluorescently labelled bacteria by rotifers and cladocerans in Lake Loosdrecht as measure of bacterivory. Mem. Ist. ital. Idrobiol. 48: 269–278.Google Scholar
  23. Ooms-Wilms, A. L., G. Postema R. D. Gulati, 1999. Populationdynamics of planktonic rotifers in Lake Loosdrecht, the Netherlands, in relation to their potential food and predators. Freshwat. Biol. 42: 77–97.Google Scholar
  24. Pace, M. L.J. D. Orcutt, 1981. The relative importance of protozoans, rotifers, and crustaceans in a fresh-water zooplankton community. Limnol. Oceanogr. 26: 822–830.Google Scholar
  25. Pourriot, R., 1977. Food and feeding habits of rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243–260.Google Scholar
  26. Seda, J.J. Kubecka, 1997. Long-term biomanipulation of Rimov Reservoir (Czech-Republic). Hydrobiologia 345: 95–108.Google Scholar
  27. Sommer, U., A. Duncan, Z. M. Gliwicz W. Lampert, 1986. The peg-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  28. Starkweather, P. L., 1980. Aspects of the feeding-behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia 73: 63–72.Google Scholar
  29. Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Canadian J. Fish. aquat. Sci. 38: 721–724.Google Scholar
  30. Tonolli, V., 1971. Zooplankton. In: Edmondson, W. T.G. G. Winberg (eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook 17, Blackwell, Oxford: 1–20.Google Scholar
  31. Walz, N., 1993. Carbon metabolism and population dynamics of brachionus angularis and keratella cochlearis. In Walz, N. (ed.), Plankton Regulation Dynamics. Experiments and Models in Rotifer Continuous Cultures. Ecological Studies: Berlin, Springer Verlag: 89–105.Google Scholar
  32. Walz, N., 1995. Rotifer populations in plankton communities – energetics and life-history strategies. Experientia 51: 437–453.Google Scholar
  33. Weisse, T.A. Frahm, 2001. Species-specific interactions between small planktonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plankton Res. 23: 1329–1338.Google Scholar
  34. Weisse, T.A. Frahm, 2001. Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshwat. Biol. 47: 53–64.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Miloslav Devetter
    • 1
    • 2
  • Jaromír Sed'a
    • 1
  1. 1.Czech Academy of SciencesHydrobiological InstituteBudějoviceCzech Republic
  2. 2.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations