Skip to main content
Log in

Secondary settlement of cockles Cerastoderma edule as a function of current velocity and substratum: a flume study with benthic juveniles

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Some newly-settled bivalve molluscs can experience a second dispersal stage in the water column and colonize areas distant from initial settlement zone ('secondary settlement'). To document mechanisms involved in such a process, experiments were conducted in a recirculating 13-m flume, using juvenile cockles Cerastoderma edule (shell length between 0.8 and 5.7 mm). After 4 h and under current surface velocities of 10, 20 and 24 cm s−1, all juveniles left the plexiglass substratum (site of initial introduction) and 42.4, 58.6 and 76.2% of juveniles, respectively, were retrieved from a downstream sand area (which only represented 7.7% of the total flume surface). Naked-eye observations showed that smaller individuals were borne within the water column, whereas larger individuals tended to roll or slip on the substratum. Byssus threads produced by the juveniles were often seen, sometimes covered in sand grains. These observations were confirmed by finding larger juveniles in the upstream part of the sand area. When sand was replaced by mud, a reduced proportion of cockles was retrieved in the experimental substratum (18.4, 20.0 and 16.4%, respectively). Observations showed that juveniles rarely succeeded in anchoring themselves in mud. When initially introduced on a favourable substratum (medium sand), more than 87% of juveniles were retrieved from that sand array at all flow velocities. This study shows that secondary settlement occurs for juvenile cockles up to 5.7 mm in shell length and depends not only on flow velocity but on substratum type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, A. & D. Denny, 1997. Settlement of marine organisms in flow. Ann. Rev. Ecol. Syst. 28: 317–339.

    Google Scholar 

  • André, C., P. R. Jonsson & M. Lindegarth, 1993. Predation on settling bivalve larvae by benthic suspension feeders: the role of hydrodynamics and larval behaviour. Mar. Ecol. Prog. Ser. 97: 183–192.

    Google Scholar 

  • André, C. & R. Rosenberg, 1991. Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria. Mar. Ecol. Prog. Ser. 71: 227–234.

    Google Scholar 

  • Armonies, W., 1992. Migratory rhythms of drifting juvenile molluscs in tidal waters of theWadden Sea. Mar. Ecol. Prog. Ser. 83: 197–206.

    Google Scholar 

  • Armonies, W., 1994a. Turnover of postlarval bivalves in sediment of tidal flats in Königshafen (German Wadden Sea). Helgolander wiss. Meeresunters. 48: 291–297.

    Google Scholar 

  • Armonies, W., 1994b. Drifting meio-and macrobenthic invertebrates on tidal flats in Königshafen: a review. Helgolander wiss. Meeresunters. 48: 299–320.

    Google Scholar 

  • Armonies, W., 1996. Changes in distribution patterns of 0-group bivalves in the Wadden sea: byssus-drifting releases juveniles from the constraints of hydrography. J. Sea Res. 35: 323–334.

    Google Scholar 

  • Bachelet, G., C. A. Butman, C. M. Webb, V. R. Starczak & P. V. R. Snelgrove, 1992a. Non-selective settlement of Mercenaria mercenaria (L.) larvae in short-term, still-water, laboratory experiments. J. exp. mar. Biol. Ecol. 161: 241–280.

    Google Scholar 

  • Bachelet, G., J. Guillou & P.-J. Labourg, 1992b. Adult-larval and juvenile interactions in the suspension-feeding bivalve, Cerastoderma edule: field observations and experiments. In Colombo, G., I. Ferrari, V. Ceccherelli & R. Rossi (eds), Marine Eutrophication and Population Dynamics. Olsen & Olsen, Fredensborg: 175–182.

    Google Scholar 

  • Bayne, B. L., 1964. Primary and secondary settlement in Mytilus edulis L. (Mollusca). J. anim. Ecol. 33: 513–523.

    Google Scholar 

  • Beaumont, A. R. & D. A. Barnes, 1992. Aspects of veliger larval growth and byssus drifting of the spat of Pecten maximus and Aequipecten (Chlamys) opercularis. ICES Mar. Sci. Symp. 49: 417–423.

    Google Scholar 

  • Beukema, J. J. & J. de Vlas, 1989. Tidal-current transport of threaddrifting postlarval juveniles of the bivalve Macoma balthica from the Wadden Sea to the North Sea. Mar. Ecol. Prog. Ser. 52: 193- 200.

    Google Scholar 

  • Blanchard, G. F., P.-G. Sauriau, V. Cariou-Le Gall, D. Gouleau, M.-J. Garet & F. Olivier, 1997. Kinetics of tidal resuspension of microbiota: testing the effects of sediment cohesiveness and bioturbation using flume experiments. Mar. Ecol. Prog. Ser. 151: 17–25.

    Google Scholar 

  • Butman, C. A., 1986. Sediment trap biases in turbulent flows: results from a laboratory flume study. J. mar. Res. 44: 645–693.

    Google Scholar 

  • Butman, C. A., 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of patterns explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. mar. biol. ann. Rev. 25: 113–165.

    Google Scholar 

  • Butman, C. A., 1989. Sediment-trap experiments on the importance of hydrodynamical processes in distributing settling invertebrate larvae in near-bottom waters. J. exp. mar. Biol. Ecol. 134: 37–88.

    Google Scholar 

  • Butman, C. A. & J. P. Grassle, 1992. Active habitat selection by Capitella sp. I larvae. I. Two-choice experiments in still water and flume flows. J. mar. Res. 50: 669–715.

    Google Scholar 

  • Butman, C. A., J. P. Grassle & C. M. Webb, 1988. Substrate choices made by marine larvae settling in still water and in a flume flow. Nature 333: 771–773.

    Google Scholar 

  • Creek, G. A., 1960. The development of the Lamellibranch Cardium edule L. Proc. Zool. Soc. Lond. 135: 243–260.

    Google Scholar 

  • Cummings, V. J., R. D. Pridmore, S. F. Thrush & J. E. Hewitt, 1993. Emergence and floating behaviours of post-settlement juveniles of Macomona liliana (Bivalvia: Tellinacea). Mar. Behav. Physiol. 24: 25–32.

    Google Scholar 

  • Davis, W. H., 1993. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. exp. mar. Biol. Ecol. 171: 187–200.

    Google Scholar 

  • de Montaudouin, X., 1997. Potential of bivalves' secondary settlement differs with species: a comparison between cockle (Cerastoderma edule) and clam (Ruditapes philippinarum) juvenile resuspension. Mar. Biol. 128: 639–648.

    Google Scholar 

  • de Montaudouin, X. & G. Bachelet, 1996. Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule. Oceanol. Acta 19: 449–463.

    Google Scholar 

  • Eckman, J. E., 1983. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28: 241–257.

    Google Scholar 

  • Eckman, J. E., F. E. Werner & T. F. Gross, 1994. Modelling some effects of behavior on larval settlement in a turbulent boundary layer. Deep Sea Res. II, 41: 185–208.

    Google Scholar 

  • Emerson, C. W. & J. Grant, 1991. The control of soft-shell clam (Mya arenaria) recruitment on intertidal sandflats by bedload sediment transport. Limnol. Oceanogr. 28: 1288–1300.

    Google Scholar 

  • Eyster, L. S. & J. A. Pechenik, 1987. Attachment of Mytilus edulis L. larvae on algal and byssal filaments is enhanced by water agitation. J. exp. mar. Biol. Ecol. 114: 99–110.

    Google Scholar 

  • Fréchette, M., C. A. Butman & W. R. Geyer, 1989. The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol. Oceanogr. 34: 19–36.

    Google Scholar 

  • Grant, J., 1980. A flume study of drift in marine infaunal amphipods (Haustoriidae). Mar. Biol. 56: 79–84.

    Google Scholar 

  • Grassle, J. P., C. A. Butman & S.W. Mills, 1992a. Active habitat selection by Capitella sp. I larvae. II. Multiple-choice experiments in still water and flume flows. J. mar. Res. 50: 717–743.

    Google Scholar 

  • Grassle, J. P., P. V. R. Snelgrove & C. A. Butman, 1992b. Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis. Neth. J. Sea Res. 30: 33–44.

    Google Scholar 

  • Grégoire, Y., E. Bourget & J.-L. Verrette, 1996. Deposition of mimics of planktonic invertebrate larvae on simple and complex substrata in flume flows. Mar. Ecol. Prog. Ser. 135: 89–100.

    Google Scholar 

  • Gross, T. F. & A. R. M. Nowell, 1983. Mean flow and turbulence scaling in a tidal boundary layer. Cont. Shelf Res. 2: 109–126.

    Google Scholar 

  • Harvey, M. & E. Bourget, 1997. Recruitment of marine invertebrates onto arborescent epibenthic structure: active and passive processes acting at different spatial scales. Mar. Ecol. Prog. Ser. 153: 203–215.

    Google Scholar 

  • Jaklin, S. & C.-P. Günther, 1996. Macrobenthic driftfauna of the Gröninger Plate. Senckenbergiana Marit. 26: 127–134.

    Google Scholar 

  • Jonsson, P. R., C. André & M. Lindegarth, 1991. Swimming behaviour of marine bivalve larvae in a flume boundary-layer flow: evidence for near-bottom confinement. Mar. Ecol. Prog. Ser. 79: 67–76.

    Google Scholar 

  • Jumars, P. A. & A. R. M. Nowell, 1984. Fluid and sediment dynamic effects on marine benthic community structure. Amer. Zool. 24: 45–55.

    Google Scholar 

  • Lambert, R., 1991. Recrutement d'espèces benthiques à larves pélagiques en régime mégatidal. Cas de Pectinaria koreni (Malmgren), annélide polychètes. PhD University Rennes 1.

  • Lane, D. J. W., A. R. Beaumont & J. R. Hunter, 1984. Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis. Mar. Biol. 84: 301–308.

    Google Scholar 

  • Lane, D. J.W., J. A. Nott & D. J. Crisp, 1982. Enlarged stem glands in the foot of the post-larval mussel, Mytilus edulis: adaptation for bysso-pelagic migration. J. Mar. Biol. Ass. U.K. 62: 809–818.

    Google Scholar 

  • Lindegarth, M., C. André & P. R. Jonsson, 1995. Analysis of the spatial variability in abundance and age structure of two infaunal bivalves, Cerastoderma edule and C. lamarcki, using hierarchical sampling programs. Mar. Ecol. Prog. Ser. 116: 85–97.

    Google Scholar 

  • Lueck, R. G. & Y. Lu, 1997. The logarithmic layer in a tidal channel. Cont. Shelf Res. 17: 1785–1801.

    Google Scholar 

  • Martel, A. & F.-S. Chia, 1991. Drifting and dispersal of small bivalves and gastropods with direct development. J. exp. mar. Biol. Ecol. 150: 131–147.

    Google Scholar 

  • Martel, A. & T. Dieffenbach, 1993. Effects of body size, water current and microhabitat on mucous-thread drifting in postmetamorphic gastropods Lacuna spp. Mar. Ecol. Prog. Ser. 99: 215–220.

    Google Scholar 

  • Mullineaux, L. S. & C. A. Butman, 1990. Recruitment of encrusting benthic invertebrates in boundary-layer flows: a deep-water experiment on Gross Seamount. Limnol. Oceanogr. 35: 409–423.

    Google Scholar 

  • Mullineaux, L. S. & E. D. Garland, 1993. Larval recruitment in response to manipulated field flow. Mar. Biol. 116: 667–683.

    Google Scholar 

  • Nowell, A. R. M. & P. A. Jumars, 1984. Flow environments of aquatic benthos. Ann. Rev. Ecol. Syst. 15: 303–328.

    Google Scholar 

  • Olivier, F., N. Desroy & C. Retière, 1996a. Habitat selection and adult-recruit interactions in Pectinaria koreni (Malmgren) (Annelida: Polychaeta) post-larval populations: results of flume experiments. J. Sea Res. 36: 217–226.

    Google Scholar 

  • Olivier, F., C. Vallet, J.-C. Dauvin & C. Retière, 1996b. Drifting in post-larvae and juveniles in an Abra alba (Wood) community of the eastern part of the Bay of Seine (English Channel). J. exp. mar. Biol. Ecol. 199: 89–109.

    Google Scholar 

  • Palmer, M. A., 1986. Hydrodynamics and structure: interactive effects on meiofauna dispersal. J. exp. mar. Biol. Ecol. 104: 53–68.

    Google Scholar 

  • Pawlik, J. R. & C. A. Butman, 1993. Settlement of a marine tube worm as a function of current velocity: interacting effects of hydrodynamics and behavior. Limnol. Oceanogr. 38: 1730–1740.

    Google Scholar 

  • Pawlik, J. R., C. A. Butman & V. R. Starczak, 1991. Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm. Science 251: 421–424.

    Google Scholar 

  • Potvin, C., 1993. ANOVA: experiments in controlled environments. In Scheiner, M. & J. Gurewitch (eds), Design and Analysis of Ecological Experiments. Chapman & Hall, New York: 46–68.

    Google Scholar 

  • Prezant, R. S. & K. Chalermwat, 1984. Flotation of the Bivalve Corbicula fluminea as a means of dispersal. Science 225: 1491–1493.

    Google Scholar 

  • Roegner, C., C. André, M. Lindegarth, J. E. Eckman & J. Grant, 1995. Transport of recently settled soft-shell clams (Mya arenaria L.) in laboratory flume flow. J. exp. mar. Biol. Ecol. 187: 13–26.

    Google Scholar 

  • Sigurdsson, J. B., C.W. Titman & P. A. Davies, 1976. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262: 386–387.

    Google Scholar 

  • Snelgrove, P. V. R., C. A. Butman & J. P. Grassle, 1993. Hydrodynamic enhancement of larval settlement in the bivalve Mulinia lateralis (Say) and the polychaete Capitella sp I in microdepositional environments. J. exp. mar. Biol. Ecol. 168: 71–109.

    Google Scholar 

  • Snelgrove, P. V. R., J. P. Grassle, J. F. Grassle, R. F. Petrecca & H. Ma, 1999. In situ habitat selection by settling larvae of marine soft-sediment invertebrates. Limnol. Oceanogr. 44: 1341–1347.

    Google Scholar 

  • Sokal, R. & F. Rohlf, 1981. Biometry.WH Freeman, New York. 859 pp.

    Google Scholar 

  • Thiébaut, E., J.-C. Dauvin & Z. Wang, 1996. Tidal transport of Pectinaria koreni postlarvae (Annelida: Polychaeta) in the Bay of Seine (eastern English Channel). Mar. Ecol. Prog. Ser. 138: 63–70.

    Google Scholar 

  • Vahl, O., 1983. Mucus drifrting in the limpet Helcion (= Patina) pellucidus (Prosobranchia, Patellidae). Sarsia 68: 209–211.

    Google Scholar 

  • Vogel, S., 1989. Life in moving fluid. The Physical Biology of Flow. Princeton University Press, Princeton. 335 pp.

    Google Scholar 

  • Winer, B. J., 1971. Statistical Principles in Experimental Design. McGraw-Hill, New York. 907 pp.

    Google Scholar 

  • Woodin, S. A., 1986. Settlement of infauna: larval choice? Bull. mar. Sci. 39: 401–407.

    Google Scholar 

  • Woodin, S. A., 1991. Recruitment of infauna: positive or negative cues. Amer. Zool. 31: 797–807.

    Google Scholar 

  • Wu, R. S. S. & P. K. S. Shin, 1997. Sediment characteristics and colonization of soft-bottom benthos: a field manipulation experiment. Mar. Biol. 128: 475–487.

    Google Scholar 

  • Yankson, K., 1986. Observations on byssus systems in the spat of Cerastoderma glaucum andC. edule. J. mar. biol. Ass. U.K. 66: 277–292.

    Google Scholar 

  • Young, G. A., 1985. Byssus-thread formation by the mussel Mytilus edulis: effects of environmental factors. Mar. Ecol. Prog. Ser. 24: 261–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Montaudouin, X., Bachelet, G. & Sauriau, PG. Secondary settlement of cockles Cerastoderma edule as a function of current velocity and substratum: a flume study with benthic juveniles. Hydrobiologia 503, 103–116 (2003). https://doi.org/10.1023/B:HYDR.0000008493.83270.2d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008493.83270.2d

Navigation