Skip to main content
Log in

Dispersal at hydrothermal vents: a summary of recent progress

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The discovery of hydrothermal vents along the Galapagos Rift in 1977 opened up one of the most dynamic and productive research themes in marine biology. In the intervening 25 years, hydrothermal vent faunas have been described from the eastern, northeastern and western Pacific, the mid-Atlantic Ridge and the Indian Ocean in the region of the Rodriguez Triple Junction. In addition, there is evidence of hydrothermal signals from the Gakkel Ridge in the Arctic, the central and southwest Indian Ridges and the Scotia Arc in Antarctica. Although often perceived as a continuous linear structure, there are many discontinuities that have given rise to separate biogeographic provinces. In addition, the intervening 25 years have seen a massive increase in our understanding of the biological processes at hydrothermal vents. However, how vents are maintained, and how new vents are colonised has been relatively poorly understood until recently. This review addresses the known larval development of vent-endemic invertebrates. The distribution of larvae in relation to the hydrothermal plume, and the ocean ridge in general, are discussed and the experimental evidence of larval longevity and transport are discussed using such variables as gene flow and larval development rates. The concept of larval dispersal along the mid-ocean ridge is discussed in relation to dispersal barriers and relates the known biogeography of hydrothermal vent systems to both local and evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen Copley, C. E., P. A. Tyler & M. S. Varney, 1998. Lipid profiles of hydrothermal vent shrimps. Cah. Biol. Mar. 39: 229–231.

    Google Scholar 

  • Baker, E. T., G. J. Massoth & R. E. Feely, 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329: 149–151.

    Google Scholar 

  • Black, M. B., R. A. Lutz & R. C. Vrijenhoek, 1994. Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the eastern Pacific. Mar. Biol. 120: 33–39.

    Google Scholar 

  • Black, M. B., A. Trivedi, P. A. Y. Maas, R. A. Lutz & R. C. Vrijenhoek, 1998. Population genetics and biogeography of vestimentiferan tube worms. Deep-Sea Res. II 45: 365–382.

    Google Scholar 

  • Both, R. E. A., 1986. Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. EOS, Transactions, American Geophysical Union 67: 489–490.

    Google Scholar 

  • Bucklin, A., 1988. Allozymic variability of Riftia pachyptila populations from the Galapagos Rift an 21 degree N hydrothermal vents. Deep-Sea Res. I 35: 1759–1768.

    Google Scholar 

  • Childress, J. J. & C. R. Fisher, 1992. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Ocean. mar biol. Ann. Rev 30: 337–441.

    Google Scholar 

  • Comtet, T. & D. Desbruyères, 1998. Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37º 17' N and 37º 50' N on the Mid-Atlantic Ridge). Mar. Ecol. Prog. Ser. 163: 165–177.

    Google Scholar 

  • Corliss, J. B., J. Dymond, L. I. Gordon, J. M. Edmond, R. P. von Herzen, R. D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane & T. H. Andel, 1979. Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.

    Google Scholar 

  • Craddock, C., W. R. Hoeh, R. A. Lutz & R. C. Vrijenhoek, 1995. Extensive gene flow among mytilid (Bathymodiolus thermophilus) populations from hydrothermal vents of the eastern Pacific. Mar. Biol. 124: 137–146.

    Google Scholar 

  • Craddock, C., R. A. Lutz & R. C. Vrijenhoek, 1997. Patterns of dispersal and larval development of archaeogastropod limpets at hydrothermal vents in the eastern Pacific. J. exp. mar. Biol. Ecol. 210: 37–51.

    Google Scholar 

  • Creasey, S., A. D. Rogers & P. A. Tyler, 1996. Genetic comparison of two populations of the deep-sea vent shrimp Rimicaris exoculata (Decapoda: Bresiliidae) from the Mid-Atlantic Ridge. Mar. Biol. 125: 473–482.

    Google Scholar 

  • Dando, P. R., A. J. Southward, E. C. Southward, D. R. Dixon, A. Crawford & M. Crawford, 1992. Shipwrecked tube worms. Nature 356: 667.

    Google Scholar 

  • Desbruyères, D., A. M. Alayse-Danet & S. Ohta, 1994. Deepsea hydrothermal communities in southwestern Pacific back-arc basins (the North Fiji and Lau Basins): Composition, microdistribution and food web. Mar. Geol. 116: 227–242.

    Google Scholar 

  • Desbruyères, D. & M. Segonzac, 1997. Handbook of Deep-sea Hydrothermal Vent Fauna. IFREMER. 279 pp.

  • Desbruyères, D., A. Almeida, M. Biscoito, T. Comtet, A. Khripounoff, N. Le Bris, P.-M. Sarradin & M. Segonzac, 2000. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440: 201–216.

    Google Scholar 

  • Desbruyères, D., M. Biscoito, J. C. Caprais, A. Colaco, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.-M. Sarradin, M. Segonzac & A. Vangriesheim, 2001. Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep-Sea Res. I 48: 1325–1346.

    Google Scholar 

  • Edmonds, H., P. J. Michael, E. T. Baker, D. P. Connelly, J. E. Snow, C. H. Langmuir, H. J. B. Dick, R. Mühe, C. R. German & D. W. Graham, 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421: 252–256.

    Google Scholar 

  • France, S. C., R. R. Hessler & R. C. Vrijenhoek, 1992. Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris. Mar. Biol. 114: 551–559.

    Google Scholar 

  • Fustec, A., D. Desbruyères & S. K. Juniper, 1987. Deep-sea hydrothermal vent communities at 13º N on the East Pacific Rise: microdistribution and temporal variation. Biol. Oceanogr. 4: 121–164.

    Google Scholar 

  • Gebruk, A., 2002. Biology of hydrothermal systems. KMK Press, Moscow. 543 pp (in Russian).

    Google Scholar 

  • German, C. R., E. T. Baker, C. Mevel & K. Tamaki, 1998. Hydrothermal activity along the southwest Indian ridge. Nature 395: 490–493.

    Google Scholar 

  • German, C. R., R. A. Livermore, E. T. Baker, N. I. Bruguier, D. P. Connelly, A. P. Cunningham, P. Morris, I. P. Rouse, P. J. Statham & P. A. Tyler, 2000. Hydrothermal plumes above the East Scotia Ridge: an isolated high-latitude back-arc spreading centre. Earth Planet. Sci. Lett. 184: 241–250.

    Google Scholar 

  • Grassle, J. P., 1985. Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilus) from the Galapagos Rift and at 13º N on the East Pacific Rise. Bull. Biol. Soc. Wash. 6: 429–442.

    Google Scholar 

  • Gray, J. S., 1981. The Ecology of Marine Sediments. Cambridge University Press. 185 pp.

  • Hashimoto, J. and others, 2001. Hydrothermal vents and associated biological communities in the Indian Ocean. InterRidge News 10: 21–22.

    Google Scholar 

  • Haymon, R. M., D. J. Fornari, M. H. Edwards, S. Carbotte, D. Wright & K. C. MacDonald, 1991. Hydrothermal vent distribution along the East Pacific Rise crest 9º 09'-54' N and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet. Sci. Lett. 104: 513–534.

    Google Scholar 

  • Hekinian, R., M. Fevrier, F. Avedick, P. Cambon, J. L. Charlou, H. Needham, J. Raillard, J. Boulegue, L. Merlivat, A. Moinet, S. Manganini & J. Lange, 1983. East Pacific Rise near 13º N: geology of new hydrothermal fields. Science 219: 1321–1324.

    Google Scholar 

  • Herring, P. J. & D. R. Dixon, 1998. Extensive deep-sea dispersal of postlarval shrimp from a hydrothermal vent. Deep-Sea Res. I 45: 2105–2118.

    Google Scholar 

  • Herzig, P. M. & W. L. Pluger, 1988. Exploration for hydrothermal activity near the Rodriguez Triple Junction, Indian Ocean. Can. Mineral. 26: 721–736.

    Google Scholar 

  • Hessler, R. R. & W. M. Smithey, 1983. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Rona, P. A., K. Bostrom, L. Laubier & K. L. Smith Jr. (eds), Hydrothermal Processes at Seafloor Spreading Centres. Plenum, New York.

    Google Scholar 

  • Jollivet, D., D. Desbruyèeres, F. Bonhomme & D. Moraga, 1995. Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. Heredity 74: 376–391.

    Google Scholar 

  • Jollivet, D., L. J. R. Dixon, D. Desbruyères & D. R. Dixon, 1998. Ribosomal (rDNA) variation in a deep sea hydrothermal vent polychaete, Alvinella pompejana, from 13º N on the East Pacific Rise. J. mar. biol. Ass. U.K. 78: 113–130.

    Google Scholar 

  • Karl, S. A., S. Schutz, D. Desbruyères, R. Lutz & R. C. Vrijenhoek, 1996. Molecular analysis of gene flow in the hydrothermal vent clam (Calyptogena magnifica). Mol. Mar. Biol. Biotech. 5: 193- 202.

    Google Scholar 

  • Kennicutt II, M. C., J. M. Brooks, R. R. Bidigare, R. R. Fay, T. L. Wade & T. J. McDonald, 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature 317: 351–353.

    Google Scholar 

  • Khripounoff, A., A. Vangriesheim, P. Crassous, M. Segonzac, A. Colaco, D. Desbruyères & R. Barthelemy, 2001. Particle flux in the Rainbow hydrothermal vent field (Mid-Atlantic Ridge): dynamics, mineral and biological composition. J. mar. Res. 59: 633–656.

    Google Scholar 

  • Kim, S. L., L. S. Mullineaux & K. R. Helfrich, 1994. Larval dispersal via entrainment, into hydrothermal plumes. J. Geophys. Res. 99: 12 655-12 665.

  • Kim, S. L. & L. S. Mullineaux, 1998. Distribution and near-bottom transport of larvae and other plankton at hydrothermal vents. Deep-Sea Res. II 45: 423–440.

    Google Scholar 

  • Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Res. I 24: 857–863.

    Google Scholar 

  • Lonsdale, P. & K. P. Becker, 1985. Hydrothermal plumes, hot springs and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet. Sci. Lett. 73: 211–225.

    Google Scholar 

  • Lutz, R. A., D. Jablonski, D. C. Rhoads & R. D. Turner, 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Mar. Biol. 57: 127–133.

    Google Scholar 

  • MacDonald, I. R., J. F. Reilly II, N. L. Guinasso Jr., J. M. Brooks, R. S. Carney, W. A. Bryant & T. J. Bright, 1990. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248: 1069–1099.

    Google Scholar 

  • MacDonald, K. C., 1982. Mid-ocean ridges: fine scale tectonic, volcanic, and hydrothermal processs within the plate boundary zone. Ann. Rev. Earth Planet. Sci. 88: 119–131.

    Google Scholar 

  • Marsh, A. G., L. S. Mullineaux, C. M. Young & D. T. Manahan, 2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411: 77–88.

    Google Scholar 

  • Moraga, D., D. Jollivet & F. Denis, 1994. Genetic differentiation across the western Pacific populations of the hydrothermal vent bivalve Bathymodiolus spp. and the eastern Pacific (13º N) population of Bathymodiolus thermophilus. Deep-Sea Res. I 41: 1551–1567.

    Google Scholar 

  • Mullineaux, L., P. H. Wiebe & E. T. Baker, 1995. Larvae of benthic invertebrates in hydrothermal vent plumes over the Juan de Fuca Ridge. Mar. Biol. 122: 585–596.

    Google Scholar 

  • Mullineaux, L. S., S. L. Kim, A. Pooley & R. A. Lutz, 1996. Identification of archaeogastropod larvae from a hydrothermal vent community. Mar. Biol. 124: 551–560.

    Google Scholar 

  • Normark, W. R., J. E. Lupton, J. W. Murray, R. A. Koski, D. A. Clague, J. L. Morton, J. R. Delaney & H. P. Johnson, 1982. Polymetallic sulfide deposits and water-column tracers of active hydrothermal vents on the southern Juan de Fuca Ridge. Mar. Technol. Soc. J. 16: 46–52.

    Google Scholar 

  • Pradillon, F., B. Shillito, C. M. Young & F. Gaill, 2001. Developmental arrest in vent worm embryos. Nature 413: 698–699.

    Google Scholar 

  • Ramirez-Llodra, E. Z., P. A. Tyler & J. T. Copley, 2000. Reproductive biology of three caridean shrimp, Rimicaris exoculata, Chorocaris chacei and Mirocaris fortunata (Caridea: Decapoda), from hydrothermal vents. J. mar. biol. Ass. U.K. 80: 473–484.

    Google Scholar 

  • Rona, P. A., G. Klinkhammer, T. A. Nelson, J. H. Trefry & H. Elderfield, 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321: 33.

    Google Scholar 

  • Rona, P. A., R. P. Deninger, M. R. Fisk, K. J. Howard, K. D. Klitgord, J. S. McClain, G. R. McMurray, G. L. Taghon & J. C. Wiltshire, 1990. Major off-axis hydrothermal activity on the northern Gorda Ridge. Geology 18: 493–496.

    Google Scholar 

  • Scheirer, D. S., E. T. Baker & K. T. M. Johnson, 1998. Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. Geophys. Res. Lett. 25: 97–100.

    Google Scholar 

  • Shank, T. M., R. A. Lutz & R. C. Vrijenhoek, 1998. Molecular systematics of shrimp (Decapoda; Bresiliidae) from deep-sea hydrothermal vents: I. Enigmatic 'small orange' shrimp from the Mid-Atlantic Ridge are Rimicaris exoculata. Mol. mar. biol. Biotech. 7: 88–96.

    Google Scholar 

  • Sibuet, M. & K. Olu, 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II 45: 517–567.

    Google Scholar 

  • Sorokin, Y. I., 1964. On the primary production and bacterial activities in the Black Sea. J. Cons. Int. Explor. Mer 29: 41–60.

    Google Scholar 

  • Southward, E. C., V. Tunnicliffe, M. B. Black, D. R. Dixon & L. J. R. Dixon, 1996. Ocean-ridge segmentation and vent tubeworms (Vestimentifera) in the NE Pacific. In MacLeod, C. J., P. A. Tyler & C. L. Walker (eds), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges. Geological Society of London, London.

    Google Scholar 

  • Spiess, R., K. C. MacDonald, T. Atawater, R. D. Ballard, A. Carranza, D. Cordoba, C. Cox, V. Diaz Garcia, J. Francheteau, J. Guerrero, J. Hawkins, R. M. Haymon, R. Hessler, T. Juteau, M. Kastner, R. Larson, B. Luyendyk, J. MacDougall, S. Miller, W. R. Normark, J. Orcutt & C. Rangin, 1980. East Pacific Rise: hot springs and geophysical experiments. Science 207: 1421–1433.

    Google Scholar 

  • Stecher, J., M. Türkay & C. Borowski, 2002. Faunal assemblages on the Pacific-Antarctic Ridge near the Foundation Seamount Chain (37º 30' S, 110º 30' W). Cah. Biol. Mar. 43: 271–274.

    Google Scholar 

  • Tunnicliffe, V., 1988. Biogeography and evolution of hydrothermalvent fauna in the eastern Pacific Ocean. Proc. r. Soc. Lond. B, 233: 347–366.

    Google Scholar 

  • Tunnicliffe, V., 1991. The biology of hydrothermal vents: Ecology and Evolution. Ocean. mar. biol. Ann. Rev. 29: 319–407.

    Google Scholar 

  • Tunnicliffe, V., S. K. Juniper & M. E. de Burgh, 1985. The hydrothermal vent community of Axial seamount, Juan de Fuca Ridge. Bull. Biol. Soc. Wash. 6: 453–464.

    Google Scholar 

  • Tunnicliffe, V., M. Botros, M. E. De Burgh, A. Dinet, H. P. Johnson, S. K. Juniper & R. E. McDuff, 1986. Hydrothermal vents of Explorer Ridge, Northeast Pacific. Deep-Sea Res. I 33: 401–412.

    Google Scholar 

  • Tunnicliffe, V. & C. M. R. Fowler, 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379: 531–533.

    Google Scholar 

  • Tyler, P. A. & C. M. Young, 1999. Reproduction and dispersal at vents and cold seeps. J. mar. biol. Ass. U.K. 79: 193–208.

    Google Scholar 

  • Tyler, P. A. & D. R. Dixon, 2000. Temperature/pressure tolerance of the first larval stage of Mirocaris fortunata from Lucky Strike hydrothermal vent field. J. mar. biol. Ass. U.K. 80: 739–740.

    Google Scholar 

  • Van Dover, C. L., 2000. The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, New Jersey. 424 pp.

    Google Scholar 

  • Van Dover, C. L., C. R. German, K. G. Speer, L. M. Parson & R. C. Vrijenhoek, 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295: 1253–1257.

    Google Scholar 

  • Van Dover, C. L., S. E. Humphris, D. Fornari, C. M. Cavanaugh, R. Collier, S. K. Goffredi, J. Hashimoto, M. D. Lilley, A. L. Reysenbach, T. M. Shank, K. L. Von Damm, A. Banta, R. M. Gallant & R. C. Vrijenhoek, 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294: 818- 823.

    Google Scholar 

  • Vrijenhoek, R. C., 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J. Hered. 88: 285–293.

    Google Scholar 

  • Young, C. M., E. Vazquez, A. Metaxas & P. A. Tyler, 1996. Embryology of vestimentiferan tube worms from deep-sea methane/ sulphide seeps. Nature 381: 514–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, P.A., Young, C.M. Dispersal at hydrothermal vents: a summary of recent progress. Hydrobiologia 503, 9–19 (2003). https://doi.org/10.1023/B:HYDR.0000008492.53394.6b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008492.53394.6b

Navigation