Skip to main content
Log in

Diatom migration and sediment armouring – an example from the Tagus Estuary, Portugal

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study measured sediment stability, colloidal and total carbohydrate and chlorophyll a in the upper 2 mm of the sediment over a whole emersion period (0800–1140) in the Tagus estuary, Portugal on the 18th April 2000. Low-temperature scanning electron microscopy (LTSEM) time series images revealed the migration of microalgae throughout the emersion period, including their appearance at the sediment surface at the beginning of emersion and their subsequent return below the surface at the end of emersion. Different species arrived at the sediment surface at different times and there was a slight lag between the appearance of the first cells and the subsequent increase in sediment stability. Increased chlorophyll a concentration in the surface sediments preceded the increase in sediment stability, whilst colloidal and total carbohydrate concentrations increased afterwards. Sediment water content decreased during the emersion period. Erosion threshold increased shortly after the microalgal cells appeared at the sediment surface, suggesting that the cells themselves act to `armour' the sediment surface, retarding erosion. Lack of correlation between sediment stability and factors traditionally considered to control sediment stability (e.g., water content and carbohydrate content) indicates that an important variable or interaction has yet to be identified. One possibility is that the carbohydrate fraction extracted does not measure accurately the binding effectiveness of the carbohydrates in the sediment. We propose feedback and `critical point' models to explain how the various sediment properties determine sediment stability. The implication is that sediment stability varies in an apparently idiosyncratic and site-specific fashion due to the complex interaction of physical and biological variables. Given the importance of ecological processes in intertidal sediments, the measurement, understanding and modelling of sediment erosion would benefit greatly from the application of ecological methods of experimental design and sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black, K. S., T. J. Tolhurst, S. E. Hagerthey & D.M. Paterson, 2002. Working with natural cohesive sediments. J. Hydraul. Eng. 128: 1–7.

    Google Scholar 

  • Brotas V. & M. R. Plante-Cuny, 1998. Spatial and temporal patterns of microphytobenthic taxa of estuarine tidal flats in the Tagus estuary using pigment analysis by HPLC. Mar. Ecol. Prog. Ser. 171: 43–57.

    Google Scholar 

  • Brotas, V., N. Risgaard-Petersen, J. Serôdio, L. Ottosen, T. Dalsgaard & L. Ribeiro. In situ measurement of photosynthetic activity and respiration of intertidal benthic microalgal communities undergoing vertical migration. Ophelia 57: 13–26.

  • Chenu, C. & J. Guérif, 1991. Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Sci. Soc. am. J. 55: 1076–1080.

    Google Scholar 

  • Clifford, N. J., J. R. French & J. Hardisty, 1993. Turbulence: Perspectives on Flow and Sediment Transport. Wiley and Sons Ltd. Chichester. 360 pp.

    Google Scholar 

  • Dade, W. B., J. D. Davis, P. D. Nichols, A. R. M. Nowell, D. Thistle, M. B. Trexler & D.C. White, 1990. Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiology. J. 8: 1–16.

    Google Scholar 

  • de Brouwer, J. F. C., S. Bjelic, E. M. G. T. de Deckere & L. J. Stal, 2000. Interplay between biology and sedimentology in a mudflat (Biezelingse Ham,Westerschelde, The Netherlands). Cont. Shelf Res. 20: 1159–1177.

    Google Scholar 

  • de Brouwer, J. F. C., G. K. Ruddy, T. E. R. Jones & L. J. Stal, 2002. Adsorption of EPS to sediment particles and the effect on the rheology of sediment slurries. Biogeochemistry 61: 57–71.

    Google Scholar 

  • Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. mar. niol. Ann. Rev. 28: 73–153.

    Google Scholar 

  • de Deckere, E. M. G. T., T. J. Tolhurst & J. F. C. de Brouwer, 2001. Destabilisation of cohesive intertidal sediments by infauna. Estuar. coast. shelf Sci. 53: 665–669.

    Google Scholar 

  • Defew, E. C., T. J. Tolhurst & D. M. Paterson, 2002. Site-specific features influence sediment stability of intertidal flats. Hydrol. Earth Syst. Sci. 6: 971–981.

    Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Ann. Chem. 28: 350–356.

    Google Scholar 

  • Edgar, L, A. & J. D. Pickett-Heaps, 1984. Diatom locomotion. In Round, F. E. & D. J. Chapman (eds), Progress in Phycological Research. 3: 47–88.

  • Grant, J., U. U. Bothmann & E. L. Mills, 1986. The interaction between benthic diatom films and sediment transport. Estuar. coast. shelf Sci. 23: 225–38.

    Google Scholar 

  • Hay, S. I., T. C. Maitland & D. M. Paterson, 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res. 8: 371–384.

    Google Scholar 

  • Hoagland, K. D., J. R. Rosowski, M. R. Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J. Phycol. 29: 537–566.

    Google Scholar 

  • Holland, A. F., R. G. Zingmark & J. M. Dean, 1974. Quantitive evidence concerning the stabilization of sediments by marine benthic diatoms. Mar. Biol. 27: 191–196.

    Google Scholar 

  • Honeywill, C., D. M. Paterson & S. E. Hagerthey, 2002. Determination of microphytobenthic biomass using pulse modulated minimum fluorescence. Eur. J. Phycol. 37: 1–8.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Manzenreider, H., 1983. Retardation of initial erosion under biological effects in sandy tidal flats. Leichtweiss Inst, Tech University Braunschweig: 469–79.

  • Paterson, D. M., 1986. The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Res. 1: 227–239.

    Google Scholar 

  • Paterson, D. M., 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol. Oceanogr. 34: 223–234.

    Google Scholar 

  • Paterson, D. M., 1994. Microbial mediation of sediment structure and behaviour. In Stal, L. J. & P. Gaumethe (eds), NATO ASI Series, Vol. 635 Microbial Mats. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Paterson, D. M., 1995. Biogenic structure of early sediment fabric visualised by LTSEM. J. Geol. Soc. 152: 131–140.

    Google Scholar 

  • Paterson, D.M., T. J. Tolhurst, J. A. Kelly, C. Honeywill, E.M. G. T. de Deckere, V. Huet, S. A. Shayler, K. S. Black, J. de Brouwer & I. Davidson, 2000. Variations in sediment stability and sediment properties across the Skeffling mudflat, Humber estuary, U.K. Conti. Shelf Res. 20: 1373–1396.

    Google Scholar 

  • Porra, R. J., W. A. Thompson & P. E. Kriedman, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384–394.

    Google Scholar 

  • Riethmüller, R., J. H. M. Hakvoort, M. Heineke, K. Heymann, H. Kühl & G. Witte, 1998. Relating erosion threshold to tidal flat surface colour. In Black, K. S., D. M. Paterson & A. Cramp (eds), Sedimentary Processes in the Intertidal Zone. Geological Society, London, Special Publications 139: 283–293.

    Google Scholar 

  • Riethmüller, R., M. Heineke, H. Kühl & R. Keuker-Rüdiger, 2000. Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos? Conti. Shelf Res. 20: 1351–1372.

    Google Scholar 

  • Sauer, J., K. Wenderoth, U. G. Maier & E. Rhiel, 2002. Effects of salinity, light and time on the vertical migration of diatom assemblages. Diatom Res. 17: 189–203.

    Google Scholar 

  • Tolhurst, T. J., K. S. Black, S. A. Shayler, S. Mather, I. Black, K. Baker & D. M. Paterson, 1999. Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuar. coast. shelf Sci. 49: 281–294.

    Google Scholar 

  • Tolhurst T. J., K. S. Black, D.M. Paterson, H. Mitchener, R. Termaat & S. A. Shayler, 2000. A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Conti. Shelf Res. 20: 10–11.

    Google Scholar 

  • Tolhurst, T. J., G. Gust & D.M. Paterson, 2002. The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability. In Winterwerp, J. C. & C. Kranenburg (eds), Fine Sediment Dynamics in the Marine Environment. Proc. Mar. Sci. 5: 409–425.

  • Underwood, G. J. C. & D.M. Paterson, 1993. Recovery of intertidal benthic diatoms after biocide treatment and associated sediment dynamics. J. mar. biol. Ass. U. K. 73: 25–45.

    Google Scholar 

  • Underwood, G. J. C. & J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in Estuaries. Adv. Ecol. Res. 29: 93–153.

    Google Scholar 

  • Underwood, G. J. C., D. M. Paterson & R. J. Parkes, 1995. The measurement of microbial carbohydrate exoploymers from intertidal sediments. Limnol. Oceanogr. 40: 1243–1253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolhurst, T., Jesus, B., Brotas, V. et al. Diatom migration and sediment armouring – an example from the Tagus Estuary, Portugal. Hydrobiologia 503, 183–193 (2003). https://doi.org/10.1023/B:HYDR.0000008474.33782.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008474.33782.8d

Navigation