Journal of Heuristics

, Volume 10, Issue 3, pp 315–336 | Cite as

A Parallel Multilevel Metaheuristic for Graph Partitioning



One significant problem of optimisation which occurs in many scientific areas is that of graph partitioning. Several heuristics, which pertain to high quality partitions, have been put forward. Multilevel schemes can in fact improve the quality of the solutions. However, the size of the graphs is very large in many applications, making it impossible to effectively explore the search space. In these cases, parallel processing becomes a very useful tool overcoming this problem. In this paper, we propose a new parallel algorithm which uses a hybrid heuristic within a multilevel scheme. It is able to obtain very high quality partitions and improvement on those obtained by other algorithms previously put forward.

graph partitioning parallel optimisation multilevel optimisation metaheuristic simulated annealing tabu search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert, C.J. and A. Kahng. (1995). “Recent Developments in Netlist Partitioning: A Survey.” Integration: the VLSI Journal 19(1/2), 1–81.Google Scholar
  2. Banerjee, P. (1994). Parallel Algorithms for VLSI Computer Aided Design. Prentice Hall: Englewood Cliffs, New Jersey.Google Scholar
  3. Baños, R., C. Gil, J. Ortega, and F.G. Montoya. (2003). “Multilevel Heuristic Algorithm for Graph Partitioning.” In Proceedings Third EuropeanWorkshop on Evolutionary Computation in Combinatorial Optimization. Springer-Verlag, LNCS 2611, pp. 143-153.Google Scholar
  4. Cung, V.D., S.L. Martins, C.C. Ribeiro, and C. Roucairol. (2001). “Strategies for the Parallel Implementation of Metaheuristics.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer, pp. 263-308.Google Scholar
  5. Diekmann, R., R. Luling, B. Monien, and C. Spraner. (1996). “Combining Helpful Sets and Parallel Simulated Annealing for the Graph-Partitioning Problem.” Parallel Algorithms and Applications 8, 61–84.Google Scholar
  6. Garey, M.R. and D.S. Johnson. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman & Company.Google Scholar
  7. Gil, C., J. Ortega, and M.G. Montoya. (2000). “Parallel VLSI Test in a Shared Memory Multiprocessors.” Concurrency: Practice and Experience 12(5), 311–326.Google Scholar
  8. Gil, C., J. Ortega, M.G. Montoya, and R. Baños. (2002). “A Mixed Heuristic for Circuit Partitioning.” Computational Optimization and Applications Journal 23(3), 321–340.Google Scholar
  9. Gilbert, J., G. Miller, and S. Teng. (1998). “Geometric Mesh Partitioning: Implementation and Experiments.” SIAM Journal on Scientific Computing 19(6), 2091–2110.Google Scholar
  10. Glover, F. and M. Laguna. (1993). “Tabu Search.” In C.R. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems. London: Blackwell, pp. 70–150.Google Scholar
  11. Graph Partitioning Archive. (2003). URL time: August 31th, 2003, 2345.Google Scholar
  12. Guo, J., G. Trinidad, and N. Smith. (2000). “MOZART: A Multi-Objective Zoning and AggRegation Tool.” In Proceedings 1st Philippine Computing Science Congress. pp. 197-201.Google Scholar
  13. Karypis, G. and V. Kumar. (1996). “Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs.” Technical Report TR 96-036, Dept. of Computer Science, University of Minnesota, Minneapolis.Google Scholar
  14. Karypis, G. and V. Kumar. (1998). “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.” SIAM Journal on Scientific Computing 20(1), 359–392.Google Scholar
  15. Karypis, G. and V. Kumar. (1998). “A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering.” Journal of Parallel and Distributed Computing 48(1), 71–95.Google Scholar
  16. Kernighan, B.W. and S. Lin. (1970). “An Efficient Heuristic Procedure for Partitioning Graphs.” Bell Systems Technical Journal 49(2), 291–307.Google Scholar
  17. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. (1983). “Optimization by Simulated Annealing.” Science 220(4598), 671–680.Google Scholar
  18. Klenke, R.H., R.D.Williams, and J.H. Aylor. (1992). “Parallel-Processing Techniques for Automatic Test Pattern Generation.” IEEE Computer 25(1), 71–84.Google Scholar
  19. Mobasher, B., N. Jain, E.H. Han, and J. Srivastava. (1996). “Web Mining: Pattern Discovery from World Wide Web Transactions.” Technical Report TR-96-050, Department of computer science, University of Minnesota, Minneapolis.Google Scholar
  20. ParMETIS. (2003). URL time: September 1st, 2003, 0020.Google Scholar
  21. Randall, M. and A. Abramson. (1999). “A Parallel Tabu Search Algorithm for Combinatorial Optimisation Problems.” In Proceedings of the 6th Australasian Conference on Parallel and Real Time Systems. Springer-Verlag, pp. 68-79.Google Scholar
  22. Schloegel, K., G. Karypis, and V. Kumar. (2000). “Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning.” In Proceedings of 6th International Euro-Par Conference. Springer-Verlag, LNCS 1900, pp. 296-310.Google Scholar
  23. Schloegel, K., G. Karypis, and V. Kumar. (2000). “A Unified Algorithm for Load-balancing Adaptive Scientific Simulations.” In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing.Google Scholar
  24. Schloegel, K., G. Karypis, and V. Kumar. (2001). “Wavefront Diffusion and LMSR: Algorithms for Dynamic Repartitioning of Adaptive Meshes.” IEEE Transactions on Parallel and Distributed Systems 12(5), 451–466.Google Scholar
  25. Shekhar, S. and D.R. DLiu. (1996). “Partitioning Similarity Graphs: A Framework for Declustering Problems.” Information Systems Journal 21(6), 475–496.Google Scholar
  26. Simon, H.D. (1991). “Partitioning of Unstructured Problems for Parallel Processing.” Computing Systems in Engineering 2-3(2), 135–148.Google Scholar
  27. Soper, A.J., C. Walshaw, and M. Cross. (2000). “A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph Partitioning.” In Proceedings of the Genetic and Evolutionary Computation Conference. pp. 674-681.Google Scholar
  28. Walshaw, C. and M. Cross. (2000). “Mesh Partitioning: A Multilevel Balancing and Refinement Algorithm.” SIAM Journal on Scientific Computing 22(1), 63–80.Google Scholar
  29. Walshaw, C. and M. Cross. (2000). “Parallel Optimisation Algorithms for Multilevel Mesh Partitioning.” Parallel Computing 26(12), 1635–1660.Google Scholar
  30. Walshaw, C. (2001). “Multilevel Refinement for Combinatorial Optimisation Problems.” Technical Report 01/IM/73, Computing Mathematical Science, University of Greenwich, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Departamento de Arquitectura de Computadores y ElectronicaUniversidad de AlmeriaAlmeriaSpain
  2. 2.Departamento de Arquitectura y Tecnologia de ComputadoresUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Ingenieria CivilUniversidad de GranadaGranadaSpain

Personalised recommendations