Plant Growth Regulation

, Volume 42, Issue 1, pp 15–28 | Cite as

Semisystematic nomenclature of brassinosteroids

  • Marco António Teixeira ZulloEmail author
  • Ladislav Kohout


The assignment of the trivial name to new isolated or detected brassinosteroid is based on the trivial names of seven different brassinosteroids, with names assigned according to the plant source from which they were first isolated. To avoid some observed mistakes in assigning trivial names to these compounds and the impractical constant usage of their systematic names, we propose a semisystematic nomenclature of brassinosteroids, in which (22R,23R)-2α,3α,22,23-tetrahydroxy-5α-campestane, the trivial name of which is 6-deoxocastasterone, is considered the functional parent compound and is named brassinostane or brassinane. A set of rules for naming the remaining natural brassinosteroids is presented.

Brassinolide Natural brassinosteroids Nomenclature Semisystematic nomenclature Systematic nomenclature Trivial names 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H., Morishita T., Uchiyama M., Takatsuto S., Ikekawa N., Ikeda M., Sassa T., Kitsuwa T. and Marumo S. 1983. Occurrence of three new brassinosteroids: Brassinone, (24S)-24-ethylbrassinone and 28-norbrassinolide in higher plants. Experientia 39: 351–353.Google Scholar
  2. Abe H., Morishita T., Uchiyama M., Takatsuto S. and Ikekawa N. 1984. A new brassinolide-related steroid in the leaves of Thea sinensis. Agric. Biol. Chem. 48: 2171–2172.Google Scholar
  3. Abe H., Honjo C., Kyokawa Y., Asakawa S., Natsume M. and Narushima M. 1994. 3-Oxoteasterone and the epimerization of teasterone: identification in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol. Biosci. Biotechnol. Biochem. 58: 986–989.Google Scholar
  4. Abe H., Takatsuto S., Nakayama M. and Yokota T. 1995. 28-Homotyphasterol, a new natural brassinosteroid from rice (Oryza sativa) bran. Biosci. Biotechnol. Biochem. 59: 176–178.Google Scholar
  5. Adam G., Porzel A., Schmidt J., Schneider B. and Voigt B. 1996. New developments in brassinosteroid research. Stud. Nat. Products Chem. 18: 495–549.Google Scholar
  6. Antonchick A.P., Schneider B., Zhabinskii V.N., Konstantinova O.V. and Khripach V.A. 2003. Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry 63: 771–776.Google Scholar
  7. Asakawa S., Abe H., Kyokawa H., Nakamura S. and Natsume M. 1994. Teasterone-3-myristate: A new type of brassinosteroid derivative in Lilium longiflorum anthers. Biosci. Biotechnol. Biochem. 58: 219–220.Google Scholar
  8. Asakawa S., Abe H., Nishikawa N., Natsume M. and Koshioka M. 1996. Purification and identification of new acyl-conjugated teasterones in lily pollen. Biosci. Biotechnol. Biochem. 60: 1416–1420.Google Scholar
  9. Baba J., Yokota T. and Takahashi N. 1983. Brassinolide-related new bioactive steroids from Dolichos lablab seeds. Agric. Biol. Chem. 47: 659–661.Google Scholar
  10. Bajguz A. and Tretyn A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62: 1027–1046.Google Scholar
  11. Friebe A., Volz A., Schmidt J., Voigt B., Adam G. and Schnabl H. 1999. 24-Epi-secasterone and 24-epi-castasterone from Lychnis viscaria seeds. Phytochemistry 52: 1607–1610.Google Scholar
  12. Fu X., Ferreira M.L.G., Schmitz F.J. and Kelly M. 1999. Tamosterone sulfates: A C-14 epimeric pair of polyhydroxylated sterols from a new Oceanapiid sponge genus. J. Org. Chem. 64: 6706–6709.Google Scholar
  13. Fujioka S., Inoue T., Takatsuto S., Yanagisawa T., Yokota T. and Sakurai A. 1995. Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Biosci. Biotechnol. Biochem. 59: 1543–1547.Google Scholar
  14. Fujioka S., Noguchi T., Yokota T., Takatsuto S. and Yoshida S. 1998. Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48: 595–599.Google Scholar
  15. Fujioka S., Noguchi T., Watanabe T., Takatsuto S. and Yoshida S. 2000a. Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53: 549–553.Google Scholar
  16. Fujioka S., Noguchi T., Sekimoto M., Takatsuto S. and Yoshida S. 2000b. 28-Norcastasterone is biosynthesized from castasterone. Phytochemistry 55: 97–101.Google Scholar
  17. Fujioka S., Takatsuto S. and Yoshida S. 2002. An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol. 130: 930–939.Google Scholar
  18. Griffiths P.G., Sasse J.M., Yokota T. and Cameron D.W. 1995. 6-Deoxotyphasterol and 3-dehydro-6-deoxoteasterone, possible precursors to brassinosteroids in the pollen of Cupressus arizonica. Biosci. Biotechnol. Biochem. 59: 956–959.Google Scholar
  19. Grove M.D., Spencer G.F., Rohwededer W.K., Mandava N.B., Worley J.F., Warthen J.D. Jr., Steffens G.L., Flippen-Anderson J.L. and Cook J.C. Jr. 1979. Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217.Google Scholar
  20. Ikekawa N., Takatsuto S., Kitsuwa T., Saito H., Morishita T. and Abe H. 1984. Analysis of natural brassinosteroids by gas chromatography-mass spectrometry. J. Chromatogr. 290: 289–302.Google Scholar
  21. Ikekawa N., Nishiyama F. and Fujimoto Y. 1988. Identification of 24-epibrassinolide in bee pollen of the broad bean Vicia faba L. Chem. Pharm. Bull. 36: 405–407.Google Scholar
  22. IUPAC (International Union of Pure and Applied Chemistry, Commission on Nomenclature of Organic Chemistry), 1999. Revised Section F: Natural products and related compounds. Pure Appl. Chem. 71: 587–643.Google Scholar
  23. IUPAC-IUB (International Union of Pure and Applied Chemistry and International Union of Biochemistry and Molecular Biology, IUPAC-IUB Joint Commission on Biochemical Nomenclature), 1989. The nomenclature of steroids. Pure Appl. Chem. 61: 1783–1822.Google Scholar
  24. Khripach V.A., Zhabinskii V.N. and De Groot A.E. 1999. Brassinosteroids (BS) in nature. In: Khripach V.A., Zhabinskii V.N. and De Groot A.E. (eds), Brassinosteroids-a new class of plant hormones, Academic Press, San Diego, USA, pp. 7–23.Google Scholar
  25. Kim S.K. 1988. Study on bio-organic chemistry of naturallyoccurring brassinosteroids. Ph.D. thesis, The University of Tokyo, Tokyo, Japan (cited in Kim SK 1991).Google Scholar
  26. Kim S.K. 1991. Natural occurrences of brassinosteroids. In: Cutler H.G., Yokota T. and Adam G. (eds), Brassinosteroids-Chemistry, Bioactivity and Applications, American Chemical Society, Washington, USA, pp. 26–35.Google Scholar
  27. Kim S.K., Yokota T. and Takahashi N. 1987. 25-Methyldolichosterone, a new brassinosteroid with a tertiary butyl group from immature seeds of Phaseolus vulgaris. Agric. Biol. Chem. 51: 2703–2705.Google Scholar
  28. Konstantinova O.V., Antonchick A.P., Oldham N.J., Zhabinskii V.N., Khripach V.A. and Schneider B. 2001. Analysis of underivatized brassinosteroids by HPLC/APCIMS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect. Czech. Chem. Commun. 66: 1729–1734.Google Scholar
  29. Mandava N.B. 1988. Plant growth-promoting brassinosteroids. Ann. Rev. Plant Phys. Plant Mol. Biol. 39: 23–52.Google Scholar
  30. Schmidt J., Yokota T., Splengler B. and Adam G. 1993. 28-Homoteasterone, a naturally occurring brassinosteroid from seeds of Raphanus sativus. Phytochemistry 34: 391–392.Google Scholar
  31. Schmidt J., Spengler B., Yokota T., Nakayama N., Takatsuto S., Voigt B. and Adam G. 1995a. Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry 38: 1095–1097.Google Scholar
  32. Schmidt J., Voigt B. and Adam G. 1995b. 2-Deoxybrassinolide-a naturally occurring brassinosteroid from Apium graveolens. Phytochemistry 40: 1041–1043.Google Scholar
  33. Schneider J.A., Yoshihara K., Nakanishi K. and Kato N. 1983. Typhasterol (2-deoxycastasterone): A new plant growth regulator from cattail pollen. Tetrahedron Lett. 24: 3859–3860.Google Scholar
  34. Singh H. and Bhardwaj T.R. 1986. Brassinosteroids. Ind. J. Chem., Sect.B: Org. Chem. Incl. Med. Chem. 25: 989–998.Google Scholar
  35. Soeno K., Kyokawa Y., Natsume M. and Abe H. 2000. Teasterone-3-O-?-D-glucopyranoside, a new conjugated brassinosteroid metabolite from lily cell suspension cultures and its identification in lily anthers. Biosci. Biotechnol. Biochem. 64: 702–709.Google Scholar
  36. Spengler B., Schmidt J., Voigt B. and Adam G. 1995. 6-Deoxo-28-norcastasterone and 6-deoxo-24-epicastasterone-two new brassinosteroids from Ornithopus sativus. Phytochemistry 40: 907–910.Google Scholar
  37. Sung G.C.Y., Janzen L., Pharis R.P. and Back T.G. 2000. Synthesis and bioactivity of 6?-and 6?-hydroxy analogues of castasterone. Phytochemistry 55: 121–126.Google Scholar
  38. Takahashi N., Yokota T. and Kin S. 1987. Isolation of brassinosteroids from bean seeds, as plant growth regulators. Jpn. Kokai Tokkyo Koho JP 63,255,297 [88,255,297][Chemical Abstracts 111:36804].Google Scholar
  39. Takatsuto S. 1994. Brassinosteroids: Distribution in plants, bioassays and microanalysis by gas-chromatography-mass spectrometry. J. Chromatogr. A 658: 3–15.Google Scholar
  40. Taylor P.E., Spuck K., Smith P.M., Sasse J.M., Yokota T., Griffiths P.G. and Cameron D.W. 1993. Detection of brassinosteroids in pollen of Lolium perenne by immunocytochemistry. Planta (Heidelberg) 189: 91–100.Google Scholar
  41. Watanabe T., Yokota T., Shibata K., Nomura T., Seto H. and Takatsuto S. 2000. Cryptolide, a new brassinolide catabolite with a 23-oxo group from Japanese cedar pollen/anther and its synthesis. J. Chem. Res.-S 18-19.Google Scholar
  42. Yang S.W., Buivich A., Chan T.M., Smith M., Lachowicz J., Pomponi S.A., Wright A.E., Mierzwa R., Patel M., Gullo V. and Chu M. 2003. A new sterol sulfate, Sch 572423, from a marine sponge, Topsentia sp. Bioorg. Med. Chem. Lett. 13: 1791–1794.Google Scholar
  43. Yokota T. and Takahashi N. 1987. Isolation of brassinosteroids as plant growth regulators from kidney beans. Jpn. Kokai Tokkyo Koho JP 63,216,896 [88,216,896][Chemical Abstracts 111:4522].Google Scholar
  44. Yokota T., Arima M. and Takahashi N. 1982a. Castasterone, a new phytosterol with plant hormone activity from chestnut insect gall. Tetrahedron Lett. 23: 1275–1278.Google Scholar
  45. Yokota T., Baba J. and Takahashi N. 1982b. A new steroidal lactone with plant-growth regulating activity from Dolichos lablab seed. Tetrahedron Lett. 23: 4965–4966.Google Scholar
  46. Yokota T., Baba J. and Takahashi N. 1983a. Brassinoliderelated bioactive sterols in Dolichos lablab: Brassinolide, castasterone and an analog, homodolicholide. Agric. Biol. Chem. 47: 1409–1411.Google Scholar
  47. Yokota T., Morita M. and Takahashi N. 1983b. 6-Deoxo-castasterone and 6-deoxodolicholide: Putative precursors for brassinolide-related steroids from Phaseolus vulgaris. Agric. Biol. Chem. 47: 2149–2151.Google Scholar
  48. Yokota T., Kim S.K., Fukui Y., Takahashi N., Takeuchi Y. and Takematsu T. 1987a. Brassinosteroids and sterols from a green alga, Hydrodiction reticulatum: Configuration at carbon-24. Phytochemistry 26: 503–506.Google Scholar
  49. Yokota T., Koba S., Kim S.K., Takatsuto S., Ikekawa N., Sakakibara M., Okada K., Mori K. and Takahashi N. 1987b. Diverse structural variations of the brassinosteroids in Phaseolus vulgaris seeds. Agric. Biol. Chem. 51: 1625–1632.Google Scholar
  50. Yokota T., Kim S.K., Kosaka Y., Ogino Y. and Takahashi N. 1987c. Conjugation of brassinosteroids. In: Schreiber K., Schütte H.R. and Sembdner G. (eds), Conjugated Plant Hormones. Structure, metabolism and function. Proceedings of the International Symposium, VEB Deutscher Verlag der Wissenschaften, Berlin, Germany, pp. 288–296.Google Scholar
  51. Yokota T., Nakayama M., Wakisaka T., Schmidt J. and AdamG. 1994. 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Biosci. Biotechnol. Biochem. 58: 1183–1185.Google Scholar
  52. Yokota T., Sato T., Takeuchi T., Nomura T., Uno K., Watanabe T. and Takatsuto S. 2001. Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry 58: 233–238.Google Scholar
  53. Zullo M.A.T. and Adam G. 2002. Brassinosteroid phytohormones-structure, bioactivity and applications. Brazil. J. Plant Physiol. 14: 143–181.Google Scholar
  54. Zullo M.A.T., Kohout L. and De Azevedo M.B.M. 2003. Some notes on the terminology of brassinosteroids. Plant Growth Regul. 39: 1–11.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marco António Teixeira Zullo
    • 1
    Email author
  • Ladislav Kohout
    • 2
  1. 1.Phytochemistry LaboratoryInstituto Agronômico (IAC)Campinas, SPBrazil
  2. 2.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPraha 6, DejviceCzech Republic

Personalised recommendations