Skip to main content
Log in

Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Today, emmer wheat, T. turgidum subsp. dicoccon, widely grown in the past is a candidate crop for sustainable agriculture in Italy. As part of a research project aimed at the enhanced use of the hulled wheat germplasm, molecular characterization was carried out to understand the genetic structure of the crop and to identify accessions of interest. A collection of 194 accessions was analyzed with 15 microsatellite loci (SSRs), while only a sample of 38 accessions was tested with 19 RFLP probes. The marker loci were selected on the basis of their independent genomic distribution. Genetic distances and allelic frequencies were calculated for each marker class. The genetic relationships were visualized with dendrograms. RFLP loci were, on average, less polymorphic than SSRs. An average Dice's genetic distance of 0.22 for RFLPs vs 0.38 for SSRs was detected, while an expected average heterozygosity per locus of 0.23 for RFLPs vs 0.26 for SSRs was also estimated. With a least number of 10 loci per marker class it was possible to identify each genotype. The most diverse accessions had different geographic origins. Germplasms from Italy and Ethiopia appear to belong to a more primitive genepool, given that a group of accessions from these countries were genetically differentiated from a Russian-Iranian group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels R. and Dvorak J. 1982. The wheat ribosomal DNA spacer region. its structure and variation in populations and among species. Theor. and Appl. Genet. 63: 337–348.

    Google Scholar 

  • Autrique E., Nachit M.M., Monneveux P., Tanksley S.D. and Sorrells M.E. 1996. Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci. 36: 735–742.

    Google Scholar 

  • Bertin P., Grégoire D., Massart S. and de Froidmont D. 2001. Genetic diversity among European cultivated spelt revealed by microsatellites. Theor. Appl. Genet. 102: 148–156.

    Google Scholar 

  • Blanco A., Bellomo M.P., Cenci A., De Giovanni C., D'Ovidio R., Iacono E. et al. 1998. A genetic map of durum wheat. Theor. Appl. Genet. 97: 721–728.

    Google Scholar 

  • Cakmak I., Tolay I., Ozdemir A., Ozkan H., Ozturk L. and Kling C.I. 1999. Differences in zinc efficiency among and within diploid, tetraploid and hexaploid wheats. Annals of botany 84: 163–171.

    Google Scholar 

  • Cavalli-Sforza L.L., Menozzi P. and Piazza P. 1994. History and geography of human genes. Princeton University Press, Princeton, N.Y.

    Google Scholar 

  • Chao S., Sharp P.J., Worland A.J., Warham J.E., Koebner D.M.R. and Gale D.M. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78: 495–504.

    Article  Google Scholar 

  • Corazza L., Pasquini M. and Perrino P. 1986. Resistance to rusts and powdery mildew in some strains of Triticum monococcum L. and Triticum dicoccum Schübler cultivated in Italy. Genet. Agrar. 40: 243–254.

    Google Scholar 

  • Cubadda R. and Marconi E. 1995. Technological and nutritional aspects in emmer and spelt. In: Padulosi S., Hammer K. and Heller J. (eds), Hulled wheats. IPGRI, Rome, pp. 203–221.

    Google Scholar 

  • Damania A.B., Hakim S. and Moualla M.Y. 1992. Evaluation of variation in Triticum dicoccum for wheat improvement in stress environments. Hereditas 116: 163–166.

    Google Scholar 

  • Ellis N.T., Davies D.R., Castleton J.A. and Bedford I.D. 1984. The organization and genetics of rDNA length variants in peas. Chromosoma 91: 74–81.

    Article  Google Scholar 

  • Eujayl I., Sorrells M., Baum M., Wolters P. and Powell W. 2001. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica 119: 39–43.

    Google Scholar 

  • Figliuolo G., Logozzo G. and Spagnoletti-Zeuli P.L. 2000. Genetic relationships between subsp. dicoccon (Schrank) and conv. durum (Desf.) MacKey of Triticum turgidum L. In: Abstracts of the International Conference on Science and Technology for Managing Plant Genetic Diversity in the 21th Century. IPGRI, Kuala Lumpur, Malaysia, pp. 10–11.

    Google Scholar 

  • Figliuolo G. and Spagnoletti-Zeuli P.L. 2000. A nested analysis to detect relationships between genetic markers and germplasm classes of durum wheat. Plant genetic resources newsletter 124: 44–51.

    Google Scholar 

  • Figliuolo G., Masi P. and Spagnoletti-Zeuli P.L. 1998. Eco-geog-raphic diversity of Aegilops geniculata Roth. In: Slinkard A.E. (ed.), Proc. of the 2th International Wheat Genetic Symposium. Univ. Ext. Press, Saskatoon, Canada 2, pp. 44–46.

    Google Scholar 

  • Figliuolo G., Nepi A. and Spagnoletti-Zeuli P.L. 1994. Chromo-somal mapping of RFLP markers in Durum wheat. In: (ed.), Interuniversity Consortium for Biotechnologies (eds), V Con-gress on University and Biotechnology Innovation. Brescia June 20/21 1994., pp. 334–335.

  • Galletti G., Bocchini P. and D'Antuono L.F. 1996. Fiber com-position of a neglected wheat species (Triticum dicoccum Schübler) as determined by pyrolysis /gas chromatography/mass spectrometry. Journal of agricultural and food chemistry 44: 31–33.

    Google Scholar 

  • Galterio G., Cappelloni M., Desiderio E. and Pogna N.E. 1994. Genetic, technological and nutritional characteristics of three Italian populations of “farrum” (Triticum turgidum ssp. dicoc-cum). J. Genet. & Breed. 48: 391–398.

    Google Scholar 

  • Hakim S., Damania A.B., Moualla M.Y. and Altunji H. 1993. Variation for storage proteins in Triticum dicoccum. Biodiversity and wheat improvement. In: Damania A.B. (ed.). ICARDA, Wiley Sayce, pp. 325–328.

  • Hartl, D.L. & A.G. Clark, 1997. Principles of Population Genetics. Sinauser Associates, 3rd eds.

  • Laghetti G., Piergiovanni A.R., Volpe N. and Perrino P. 1999. Agronomic performance of Triticum dicoccon Schrank and T. spelta L. accessions under Southern Italian conditions. Agr. Med. 129: 199–211.

    Google Scholar 

  • Laghetti G., Piergiovanni A.R., Volpe N., Semeraro D., Falivene M., Basile M. et al. 1997. Il farro, un'alternativa per la cere-alicoltura lucana. L'Informatore Agrario 40: 105–108.

    Google Scholar 

  • Lawrence M.J. and Marshall D.F. 1997. Plant population genetics. In: Maxted N., Ford-Lloyd B.V. and Hawkes J.G (eds), Plant Genetic Conservation. The In-Situ Approach. Chapman & Hall, London, pp. 99–113.

    Google Scholar 

  • Lewis, P.O. & D. Zaykin, 2001. Genetic Data Analysis: Computer program for the analysis of allelic data.Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/ software.html.

  • Luo M.C., Yang Z.L. and Dvorak J. 2000. The Q locus of Iranian and European spelt wheat. Theor. and Appl. Genet. 100: 602–606.

    Google Scholar 

  • MacKey J. 1954. Neutron and x-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40: 65–180.

    Google Scholar 

  • Melchinger A.E., Graner A., Sing M. and Messmer M. 1994. Relationships among European barley germplasm. I genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Science 34: 1191–1199.

    Google Scholar 

  • Nei M. and Li W.H. 1979. Mathematical model for studyng genetic variation in terms of restriction endonucleases Proc. Nat. Acad. Sci. 76, pp. 5269–5273.

    PubMed  Google Scholar 

  • Nesbitt M. and Samuel D. 1995. From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S., Hammer K. and Heller J. (eds), Hulled Wheats. IPGRI, Rome.

    Google Scholar 

  • Perrino P., Infantino S., Basso P., Di Marzo A., Volpe N. and Laghetti G. 1993. Valutazione e selezione di farro in ambienti marginali dell'Appennino molisano II nota. Informatore Agrario. XLIX: 41–45.

    Google Scholar 

  • Perrino P., Laghetti G., Volpe N., Infantino S. and Dimarzo A. 1991. Valutazione e selezione di farro in ambienti marginali dell'Ap-pennino molisano. Informatore Agrario. XLVII: 57–63.

    Google Scholar 

  • Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.-H., Leroy P. et al. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • SAS, 1993. SAS/STAT, User's Guide. Vol 2. SAS Institute Inc. Cary, NC.

    Google Scholar 

  • Siedler Messmer H.M.M., Schachermayr G.M., Winzeler H., Win-zeler M. and Keller B. 1994. Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor. Appl. Genet. 88: 994–1003.

    Google Scholar 

  • Smith S. and Helentjaris T. 1996. DNA fingerprinting and Plant Variety Protection. In: Paterson A.H. (ed.), Genome Mapping in Plants. Academic Press, Georgetown, Texas, pp. 95–110.

    Google Scholar 

  • Soller M. and Beckman J.S. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Article  Google Scholar 

  • Spagnoletti-Zeuli P.L. and Qualset C.O. 1987. Geographical di-versity for quantitative spike characters in a world collection of durum wheat. Crop Science 27: 235–241.

    Google Scholar 

  • Spagnoletti-Zeuli P.L., Sergio L. and Perrino P. 1995. Changes in the genetic structure of wheat germplasm accessions during seed rejuvenation. Plant Breeding 114: 193–198.

    Google Scholar 

  • Szabo' A.T. and Hammer K. 1995. Notes on the taxonomy of farro. Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S., Hammer K. and Heller J. (eds), Hulled wheats. IPGRI, Rome, pp. 2–40.

  • UPOV, 1992. International Convention for the protection of New Varieties of Plants, UPOV publication N° 221(E). International Union for the protection of new varieties of plants, 31, Geneve.

  • Weir, B.S., 1996. Genetic data analysis II. Sinawer Associates, 6Sunderland, Mass., California.

  • Wright S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figliuolo, G., Perrino, P. Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genetic Resources and Crop Evolution 51, 519–527 (2004). https://doi.org/10.1023/B:GRES.0000024153.75636.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GRES.0000024153.75636.6f

Navigation