Skip to main content
Log in

Specific and non specific interactions involving LeX determinant quantified by lipid vesicle micromanipulation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Carbohydate-carbohydrate recognition is emerging today as an important type of interaction in cell adhesion. One Ca2+mediated homotypic interaction between two LewisX determinants (LeX) has been proposed to drive cell adhesion in murine embryogenesis. Here, the adhesion energies of lipid vesicles functionalised with glycolipids bearing monomeric or dimeric LeX determinants were measured in NaCl or CaCl2 media with the micropipette aspiration technique. These experiments on LeX with an environment akin to that provided by biological membrane confirmed the existence of this specific calcium dependant interaction of monomeric LeX. In contrast, dimeric LeX produced a repulsive contribution. By using a simple model involving the various contributions to the adhesion free energy, specific and non specific interactions could be separated and quantified. The involvement of calcium ions has been discussed in the monomeric and dimeric LeX lipids. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne Y, van Tilbeurgh H, Cambillau C, Protein carbohydrate interactions, Curr Opin Struct Bio3, 681-6 (1993).

    Article  CAS  Google Scholar 

  2. Lee Y C, Lee R T, Carbohydrate-protein interactions-basis of gly-cobiology, Acc Chem Res 28, 321-7 (1995).

    Article  Google Scholar 

  3. Dwek R A, Glycobiology: Toward understanding the function of sugars, Chem Rev 96, 683-720 (1996).

    Article  PubMed  Google Scholar 

  4. Hakomori S, Carbohydrate-carbohydrate interaction as an initial step in cell recognition, Pure Appl Chem 63, 473-82 (1991).

    CAS  Google Scholar 

  5. Misevic G N, Burger MM, J Biol Chem 268, 4922-9 (1993).

    PubMed  Google Scholar 

  6. Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Penad`es, S, Adhesion forces between Lewis(x) determinant antigens as measured by atomic force microscopy, Angew Chem Int Ed 40, 3052-5 (2001).

    Article  CAS  Google Scholar 

  7. Geyer A, Gege C, Schmidt RR, Carbohydrate-carbohydrate recog-nition between Lewis(X) glycoconjugates, Angew Chem Int Ed 38, 1466-8 (1999).

    Article  CAS  Google Scholar 

  8. Geyer A, Gege C, Schmidt RR, Calcium dependent carbohydrate-carbohydrate recognition between Lewis X blood group antigens,Angew Chem Int Ed 39, 3246-9 (2000).

    Article  CAS  Google Scholar 

  9. GegeC, Geyer A, Schmidt RR, Carbohydrate-carbohydrate recog-nition between Lewis Xblood group antigens, mediated by calcium ions, Eur J Org Chem 2475-85 (2002).

  10. Matsuura K, Kitakouji H, Sawada N, Ishida H, Kiso M, Kitajima K, Kobayashi K, A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosaccharides of glycolipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance, J AmChem Soc 122, 7406-7 (2000).

    Article  CAS  Google Scholar 

  11. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Carbohydrate self-recognition mediates marine sponge cellular adhesion, Proc Natl Acad Sci USA 98, 9419-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Hernáiz MJ, de la Fuente JM, Barrientos AG, Penad`es S, A model system mimicking glycosphingolipid clusters to quantify carbohy-drate self-interactions by surface plasmon resonance, AngewChem Int Ed 41, 1554-7 (2002).

    Article  Google Scholar 

  13. Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet J-M, Perez E, Sinäy P,Ultraweak sugar-sugar interactions for transient cell adhesion, Biophys J 80, 1354-8 (2001).

    PubMed  CAS  Google Scholar 

  14. Bovin NV, Carbohydrate-carbohydrate interactions: Areview, Bio-chemistry (Moscow) 61, 694-704 (1996).

    Google Scholar 

  15. Spillmann D, Burger MM, Carbohydrate-carbohydrate interac-tions. In Carbohydrates in Chemistry and Biology, edited by Ernst B, Hart GW, Sinäy P(Wiley-VCH, Weinheim, 2000), Vol. 2 pp. 1061-91.

  16. Rojo J, Morales JC, Penad`es S, Carbohydrate-carbohydrate in-teractions in biological and model systems, Top Cur Chem 218, 45-92 (2002).

    CAS  Google Scholar 

  17. Haseley SR, Kamerling JP, Vliegenthart JF, Unravelling carbohydrate interactions with Biosensors using surface plasmon resonance (SPR) detection, Top Cur Chem 218, 93-114 (2002).

    Article  CAS  Google Scholar 

  18. Tromas C, García R, Interaction forces with carbohydrates mea-sured by atomic force microscopy, Top Cur Chem 218, 115-32 (2002).

    CAS  Google Scholar 

  19. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D, Stage-specific embryonic antigens (ssea-3 and ssea-4) are epitopes of a unique globo-series ganglioside.EMBO J 2, 2355-61 (1983).

    PubMed  CAS  Google Scholar 

  20. Kannagi R, Nudelman E, Levery SB, Hakomori S, A series of human-erythrocyte glycosphingolipids reacting to the monoclonal-antibody directed to a developmentally regulated antigen, ssea-1, J Biol Chem 257, 4865-74 (1982).

    Google Scholar 

  21. Solter D, Knowles BB, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc Natl Acad Sci USA 75, 5565-9 (1978).

    Google Scholar 

  22. Eggens I, Fenderson BA, Stroud MR, Goldberg IR, Habermann R, Toyokuni T, Hakomori S, Specific Interaction between Le X and Le X determinants, a possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells, J Biol Chem 264, 9476-84 (1989).

    PubMed  CAS  Google Scholar 

  23. Kojima N, Fenderson BA, Stroud MR, Goldberg IR, Habermann R, Hakomori S, Further studies on cell adhesion based on Le X-Le X interaction, with new approaches: Embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le X expression, Glycoconjugate J 11, 238-48 (1994).

    Article  CAS  Google Scholar 

  24. Boubelik M, Floryk D, Bohata J, Draberova L, Macak J, Smid F, Draber P, Le X glycosphingolipids-mediated cell aggregation, Glycobiology 8, 139-46 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. Siuzdak G, Ivhikawa Y, Caulfield TJ, Munoz B, Wong C-H,KC Nicolaou, Evidence of Ca 2 +-dependent carbohydrate association through ion spray mass spectrometry, J AmChem Soc 115, 2877-281 (1993).

    Google Scholar 

  26. Esnault J, Mallet J-M, Zhang Y, Sinäy P, LeBouar T, Pincet F, Perez E, New highly hydrophobic Lewis X glycolipids: Synthesis and monolayer behaviour, Eur J Org Chem 253-60 (2001).

  27. Evans E, Adhesion of surfactant-membrane covered droplets: Spe-cial features and curvature elasticity effects, Colloids Surfaces 43, 327-47 (1990).

    Article  CAS  Google Scholar 

  28. Marcelja S, Electrostatics of membrane adhesion, Biophys J 61, 1117-21 (1992).

    PubMed  CAS  Google Scholar 

  29. Gourier C, Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet J-M, Sinay P, Perez E, Can small complex chains be treated as polymers?, to appear in Macromolecules.

  30. Helfrich WZ, Steric interaction of fluid membranes in multilayer systems, Naturforsch 33A, 305-15 (1978).

    CAS  Google Scholar 

  31. Rand RP, Parsegian VA, Hydration forces between phospholipid-bilayers, BB A988, 351-76 (1989).

    CAS  Google Scholar 

  32. Israelachvili JN, Wennerström H, Entropic forces between am-phiphilic surfaces in liquids, J Phys Chem 96, 520-31 (1992).

    Article  CAS  Google Scholar 

  33. Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA, Interactions between neutral phospholipid-bilayer membranes, Biophys J 37, 657-65 (1982).

    PubMed  CAS  Google Scholar 

  34. Evans E, Entropy-driven tension in vesicle membranes and un-binding of adherent vesicles, Langmuir 7, 1900-8 (1991).

    Article  CAS  Google Scholar 

  35. Dolan A, Edwards F, Theory of stabilization of colloids by ad-sorbed polymer, Proc Royal Soc LondA 337, 509-16 (1974).

    Article  CAS  Google Scholar 

  36. Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN, Modulation of interaction forces between bilayers exposing short-chained ethylene-oxide headgroups,Biophys J 66, 1479-88 (1994).

    PubMed  CAS  Google Scholar 

  37. Evans E, Parsegian VA, Thermal-mechanical fluctuations enhance repulsion between bimolecular layers, Proc Natl Acad Sci USA 83, 7132-6 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. Evans E, Needham D, Physical-properties of surfactant bilayer-membranes-thermal transitions, elasticity, rigidity, cohesion and colloidal interactions, J Phys Chem 91, 4219-28 (1987).

    Article  CAS  Google Scholar 

  39. Israelachvili JN, Intermolecular and Surface Forces (Academic Press, Harcourt Brace Jovanovich publishers, 1985), pp 180-4.

  40. Lichtenthaler FW, Kaji E, Weprek S, Disaccharide-derived 2-oxo-and 2-oximinoglycosyl bromides: Novel, conveniently accessible building blocks for the expedient construction of oligosaccharides with alpha-D-glucosamine, beta-D-mannose, and beta-D-mannosamine as constituent sugars, J Org Chem 50, 3505-15 (1985).

    Article  CAS  Google Scholar 

  41. Zhang Y, Esnault J, Mallet JM, Sinäy P,Synthesis of the â-methyl glycoside of lacto-N-fucopentaose III, J Carbohydr Che m18, 419-27 (1999).

    Article  CAS  Google Scholar 

  42. Veeneman GH, van Leeuwen SH, van Boom JH, Iodonium ion promoted reactions at the anomeric centre. II An efficient thio-glycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters, Tetrahedron Lett 31, 1331-4 (1990).

    Article  CAS  Google Scholar 

  43. Jansson K, Ahlfors S, Frejd T, Kihlberg J, Magnusson G, 2-(Trimethylsilyl)ethyl glycosides. Synthesis, anomeric deblocking, and transformation into 1,2-trans 1-O-acyl sugars, JOrg Chem 53, 5629-47 (1988).

    Article  CAS  Google Scholar 

  44. Sakai K, Nakahara Y, Ogawa T, Total synthesis of nonasaccharide repeating unit of plant cell wall xyloglucan: An endogenous hormone which regulates cell growth, Tetrahedron Lett 31, 3035-8 (1990).

    Article  CAS  Google Scholar 

  45. Bregant S, Zhang Y, Mallet JM, Brodzki A, Sinäy P,Synthesis of a highly hydrophobic dimeric Lewis X containing glycolipid: A model for the study of homotypic carbohydrate-carbohydrate interaction, Glycoconjugate J 16, 757-65 (1999).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourier, C., Pincet, F., Perez, E. et al. Specific and non specific interactions involving LeX determinant quantified by lipid vesicle micromanipulation. Glycoconj J 21, 165–174 (2004). https://doi.org/10.1023/B:GLYC.0000044847.15797.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000044847.15797.2e

Navigation