Skip to main content
Log in

Understanding carbohydrate-carbohydrate Interactions by means of glyconanotechnology

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, Neutra MR, Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: Implications for microbial attachment and oral vaccine targeting, J Exp Med 184, 1045-59 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Varki A, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3, 97-130 (1993).

    PubMed  CAS  Google Scholar 

  3. Dwek RA, Glycobiology: Toward understanding the function of sugars Chem Rev 96, 683-720 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. Lee YC, Lee RT, Carbohydrate-protein interactions: Basis of glycobiology, Acc Chem Res 28, 321(1995).

    Article  CAS  Google Scholar 

  5. Bourne Y, van Tilbeurgh H, Cambillau C, Protein-carbohydrate interactions, Curr Opin Struct Biol 3, 681-6 (1993).

    Article  CAS  Google Scholar 

  6. Ritchie GE, Moffat BE, Sim RB, Morgan BP, Dwek Ra, Rudd Pm, Glycosylation and the complement system, Chem Rev 102, 305-19 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Hakomori S-I, Carbohydrate-carbohydrate interactions as an initial step in cell recognition, Pure Appl Chem 63, 473-82 (1991).

    CAS  Google Scholar 

  8. Spillman D, Burger MM,Carbohydrate-carbohydrate interactions. In Carbohydrates in Chemistry and Biology,edited by Ernst B, Hart GW, Sinay P (Wiley-VCH, Weinheim, 2000), Vol. 2, pp. 1061-91.

    Google Scholar 

  9. Bovin NH, Carbohydrate-carbohydrate interactions. In Glyco-science: Status and Perspectives, edited by Gabius HJ, Gabius S (Chapman & Hall, Weinheim 1997), pp.277-89.

    Google Scholar 

  10. Rojo J, Morales, JC, Penadés S, Carbohydrate-carbohydrate in-teractions in biological and model systems, Top Curr Chem 218, 45-92 (2002).

    CAS  Google Scholar 

  11. Hakomori S-I, Travelling for the glycosphingolipid path, Glyco-conjugate J 17, 627-47 (2000).

    Article  CAS  Google Scholar 

  12. Several authors, Glycosphingolipids and membrane domains. Gly-coconjugate J 17(3/4), (2000), edited by Sonnino, Guido Tetta-manti, Kluwer Academic Publishers

  13. Hakomori S, The glycosynapse, Proc Natl Acad Sci USA 99, 225-32 (2002).

    Article  CAS  Google Scholar 

  14. Eggens I, Fenderson BA, Toyokuni T, Dean B, Stroud MR, Hakomori S, Specific interaction between Le X and Le X determi-nants: A possible basis for cell recognition in preimplantation em-bryos and in embryonal carcinoma cells, J Biol Chem 264, 9476-84 (1989).

    PubMed  CAS  Google Scholar 

  15. Kojima N, Hakomori S, Specific interaction between gangliotriao-sylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J Biol Chem 264, 20159-62 (1989).

    PubMed  CAS  Google Scholar 

  16. Song Y, Withers DA, Hakomori S-I, Globoside-dependent adhe-sion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB, J Biol Chem 273, 2517-25 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. Otsuji E, Park YS, Tashiro K, Kojima N, Toyokuni T, Hakomori S-I, Inhibition of B16 melanoma metastasis by administration of G(M3)-or Gg3-liposomes-blocking adhesion of melanoma-cells to endothelial-cells (antiadhesion therapy) via inhibition of G(M3)-Gg3Cer or G(M3)-lacCer interaction, Int J Oncol 6, 319-27 (1995).

    Google Scholar 

  18. Yu S, Kojima N, Hakomori S-I, Kudo S, Inoue S, Inoue Y, Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN)GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope, Proc Natl Acad Sci USA 99, 2854-9 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Misevic GN, Burger MM,Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion, J Biol Chem 268, 4922-9 (1993).

    PubMed  CAS  Google Scholar 

  20. Burkat W, Burger MM, Reconstitution of high cell binding affinity of a marine sponge aggregation factor by cross-linking of small lowaffinity fragments into a large polyvalent polymer, J Biol Chem 261, 2853-9 (1986).

    Google Scholar 

  21. Spillmann D, Hard K, Thomas-Oates JE, Vliegenthart JFG, Misevic G, Burger MM, Finne J, Characterization of a novel pyru-vylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona polifera, J Biol Chem 268, 13378-87 (1993).

    PubMed  CAS  Google Scholar 

  22. Spillmann D, Thomas-Oates JE, Van Kuik JA, Vliegenthart JFG, Misevic G, Burger MM, Finne J, Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate aggregation of the marine sponge Microciona prolifera, J Biol Chem 270, 5089-97 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Wormald MR, Edge CJ, Dwek RA, The solution conformation of the Le X group, Biochem Biophys Res Commun 180, 1214-21 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. Benoit H, Herve D, Pristchepa M, Berthault P, Zhang Y-M, Mallet JM, Esnault J, Sinay P, NMR study of a Lewis X pentasaccharide derivative: Solution structure and interaction with cations, Carbohydrate Res 315, 48-62 (1999).

    Article  Google Scholar 

  25. Kojima N, Fenderson BA, Stroud MR, Goldberg IR, Habermann R, Toyokuni T, Hakomori S-I, Further-studies on cell-adhesion based on Le(X)-Le(X) interaction, with new approaches-embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumor-cells based on Le(X) expression, Glycoconj J 11, 238-48 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Houseman BT, Mrksich M, Model systems for studying polyva-lent carbohydrate binding interactions, Top Curr Chem 218, 1-44 (2002).

    Article  CAS  Google Scholar 

  27. Mammen M, Choi SK, Whitesides GM, Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors, Angew Chem Int Ed 37, 2754-94 (1998).

    Article  Google Scholar 

  28. Coteron JM, Vicent C, Bosso C, Penadés S, Glycophanes, cyclodextrin-cyclophane hybrid receptors for apolar binding in aqueous solutions. A stereoselective carbohydrate-carbohydrate interaction in water, J AmChem Soc 115, 10066-76 (1993).

    Article  CAS  Google Scholar 

  29. Jimenez-Barbero J, Junquera E, Martin-Pastor M, Sharma S, Vicent C, Penadés S, Molecular recognition of carbohydrates using a synthetic receptor. A model system to understand the stereose-lectivity of a carbohydrate-carbohydrate interaction in water, J Am Chem Soc 117, 11198-204 (1995).

    Article  CAS  Google Scholar 

  30. Morales JC, Zurita D, Penadés S, Carbohydrate-carbohydrate interactions in water with glycophanes as model systems, J Org Chem 63, 9212-22 (1998).

    Article  CAS  Google Scholar 

  31. Hang HC, Bertozzi CR, Chemoselective approach to glycoprotein assembly, Acc Chem Res 34, 727-36 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Lindhorst TK, Artificial multivalent sugar ligands to understand and manipulate carbohydrate-protein interactions, Topics Curr Chem 218, 201-35 (2002).

    CAS  Google Scholar 

  33. Kim Y, Zimmerman SC, Application of dendrimers in bio-organic chemistry, Curr Opin Chem Biol 2, 733-42 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. Eggens I, Fenderson BA, Toyokuni T, Hakomori S-I, A role of carbohydrate-carbohydrate interaction in the process of specific cell recognition during embryogenesis and organogenesis-a preliminary note, Biochem Biophys Res Commun 158, 913-20 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. Childs RA, Pennington J, Uemura K, Scudder P, Goodfellow PN, Evans MJ, Feizi T, High molecular-weight glycoproteins are the major carriers of the carbohydrate differentiation antigen I, i and SSEA-1 of mouse teratocarcinoma cells, Biochem J 215, 491-503 (1983).

    PubMed  CAS  Google Scholar 

  36. Mrksich M, A surface chemistry approach to studying cell adhe-sion, Chem Soc Rev 29, 267-73 (2000).

    Article  CAS  Google Scholar 

  37. Mrksich M, Whitesides GM, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells, Ann Rev Biophys Biomol Struct 25, 55-78 (1996).

    Article  CAS  Google Scholar 

  38. Barrientos AG, de la Fuente JM, Rojas TC, Fernandez A, Penadés S, Gold glyconanoparticles: Synthetic polyvalent ligands mimick-ing glycocalyx-like surfaces as tools for glycobiological studies, Chem Eur J 9, 1909-21 (2003).

    Article  CAS  Google Scholar 

  39. Rojo J, Diaz V, de la Fuente JM, Segura I, Barrientos AG, Riese HH, Bernad A, Penadés S, Gold glyconanoparticles as new tools in antiadhesive therapy, ChemBioChem 5, 291-7 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. de la Fuente JM, Bergstrom M, Ohlson, S, Penadés S, unpublished results.

  41. de la Fuente JM, Penadés S, Synthesis of Le X-neoglycoconjugate to study carbohydrate-carbohydrate associations and its in-tramolecular interaction, Tetrahedron: Asymmetry 13, 1879-88 (2002).

    Article  CAS  Google Scholar 

  42. de la Fuente JM, Eaton P, Barrientos AG, Menéndez M, Penadés S, unpublished results.

  43. de la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penadés S, Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions,Angew Chem Int Ed 40, 2257-61 (2001).

    Article  Google Scholar 

  44. Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penadés S, Adhesion forces between Lewis X determinant antigens as measured by atomic force microscopy, Angew Chem Int Ed 40, 3052-5 (2001).

    Article  CAS  Google Scholar 

  45. Hernaiz MJ, de la Fuente JM, Barrientos AG, Penadés S, A model system mimicking glycosphingolipid clusters to quantify carbo-hydrate self-interactions by Surface Plasmon Resonance, Angew Chem Int Ed 41, 1554-7 (2002).

    Article  CAS  Google Scholar 

  46. Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet JM, Perez E, Sinäy P, Ultraweak sugar-sugar interactions for transient cell adhesion, Biophys J 80, 1354-8 (2001).

    PubMed  CAS  Google Scholar 

  47. Santacroce PV, Basu A, Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolay-ers, Angew Chem Int Ed 42, 95-8 (2003).

    Article  CAS  Google Scholar 

  48. Boggs JM, Menikh A, Rangaraj G, Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilay-ers, Byophys J 78, 874-85 (2000).

    CAS  Google Scholar 

  49. Zopf D, Ohlson S, Weak-affinity chromatography, Nature 346, 87-8 (1990).

    Article  Google Scholar 

  50. Tromas C, Garcia R, Interaction forces with carbohydrates mea-sured by atomic force microscopy, Topics Curr Chem 218, 115-32 (2002).

    CAS  Google Scholar 

  51. Dammer U, Popescu O, Wagner P, Anselmetti D, Gutherodt H-J, Misevic GN, Binding strength between cell-adhesion proteogly-cans measured by atomic-force microscopy, Science 267, 1173-5 (1995).

    PubMed  CAS  Google Scholar 

  52. McClay DR, Wessel GM, Marchase RB, Intercellular recognition: Quantitation of initial binding events, Proc Natl Acad Sci USA 78, 4975-9 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. Amblard F, Auffray C, Sekaly R, Fischer A, Molecular analysis of antigen-independent adhesion forces between T and B lympho-cytes, Proc Natl Acad Sci USA 91, 3628-32 (1994).

    Article  PubMed  CAS  Google Scholar 

  54. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R, Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system, J Chem Soc Chem Commun 801-2 (1994).

  55. Templeton AC, Chen A, Gross SM, Murray RW, Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers, Langmuir 15, 66-76 (1999).

    Article  CAS  Google Scholar 

  56. For references see www.biacore.com

  57. Haseley SR, Kamerling JP, Vliegenthart JFG, Unravelling carbo-hydrate interactions with biosensors using surface plasmon resonance (SPR) detection, Topic Curr Chem 218, 93-114 (2002).

    Article  CAS  Google Scholar 

  58. Matsuura K, Kitakuoji H, Sawada N, Ishida H, Kiso M, Kitajima K, Kobajashi K, A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosaccharides of gly-colipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance, J AmChem Soc 122, 7406-7 (2000).

    Article  CAS  Google Scholar 

  59. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Carbohydrate self-recognition mediates marine sponge cellular adhesion, Proc Natl Acad Sci USA 96, 9419-24 (2001).

    Article  Google Scholar 

  60. Bertozzi CR, Kiessling LL, Chemical biology, Science 291, 2357-69 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. de la Fuente JM, Alcantara D, Penadés S, unpublished results.

  62. Rojas TC, de la Fuente JM, Barrientos AG, Penadés S, Ponsonet L, Fernández A, Gold glyconanoparticles as building blocks for nanomaterial design, Adv Mater 14, 585-8 (2002).

    Article  CAS  Google Scholar 

  63. Roos E, Dingemans KP, Mechanism of metastasis, Biochem Bio-phys Acta 560, 135-66 (1979).

    CAS  Google Scholar 

  64. McEver RP, Selectin-carbohydrate interactions during inflammation and metastasis, Glycoconj J 14, 585-91 (1997).

    Article  PubMed  CAS  Google Scholar 

  65. Hakomori S-I, Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens, Adv Cancer Res 52, 257-331 (1989).

    Article  PubMed  CAS  Google Scholar 

  66. Hakomori S-I, Tumor malignancy defined by aberrant glycosyla-tion and sphingo(glyco)lipid metabolism, Cancer Res 56, 5309-18 (1996).

    PubMed  CAS  Google Scholar 

  67. Storhoff JJ, Mirkin CA, Programmed materials synthesis with DNA, Chem Rev 99, 1849-62 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. Niemeyer CM, Nanoparticles, proteins, and nucleic acids: Biotechnology meets material science, Angew Chem Int Ed 40, 4128-58 (2001).

    Article  CAS  Google Scholar 

  69. Penn SG, He L, Natan M, Nanoparticles for bioanalysis, Curr Opin Chem Biol7, 609-15 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, J.M., Penadés, S. Understanding carbohydrate-carbohydrate Interactions by means of glyconanotechnology. Glycoconj J 21, 149–163 (2004). https://doi.org/10.1023/B:GLYC.0000044846.80014.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000044846.80014.cb

Navigation