Skip to main content
Log in

Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sponges were the earliest multicellular organisms to evolve through the development of cell recognition and adhesion processes mediated by cell surface proteoglycans. Information on sponges has an extra added value because, as a group, they are the oldest Metazoans alive and contribute more to our understanding of life on earth than knowledge of other animal groups. Although the proteoglycans are emerging as key players in various physiological and pathophysiological cellular events, little is known about the carbohydrate moiety of the proteoglycan molecule. Until recently there was no evidence provided for the existence of specific and biologically significant carbohydrate-carbohydrate interaction. We show here that the interaction between single oligosaccharides of surface proteoglycans is relatively strong (in the 200-300 piconewtons range) and in the same range as other relevant biological interactions, like those between antibodies and antigens. This carbohydrate-carbohydrate recognition is highly species-specific and perfectly mimics specific cell-cell recognition. Both the strength and the species-specificity of the carbohydrate-carbohydrate interaction are guaranteed by polyvalency, by compositional and architectural differences between carbohydrates, and by the arrangement of the carbohydrate chain in a three-dimensional context. Ca2+-ions are essential and probably provide coordinating forces. Our findings confirm the existence and character of species-specific carbohydrate-carbohydrate recognition fundamental to cell recognition and adhesion events. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spillmann D, Burger MM, Carbohydrate-carbohydrate interactions in adhesion, J Cell Biochem 61, 562-8 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Varki A, Selectin ligands, Proc Natl Acad Sci USA 91, 7390-7 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Bucior I, Scheuring S, Engel A, Burger MM, Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition,J Cell Biol 165, 529-37 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Nakano M, Kakehi K, Tsai MH, Lee YC, Detailed structural features of glycan chains derived from alpha1-acid glycopro-teins of several different animals-The presence of hypersialylated, O-acetylated sialic acids but not disialy residues,Glycobiology 14, 431-44 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. Bush CA, Martin-Pastor M, Imberty A, Structure and conforma-tion of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides, Annu Rev Biophys Biomol Struct 28, 269-93 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. Berninsone PM, Hirschberg CB, The nematode Caenorhabditis elegans as a model to study the roles of proteoglycans, Glycoconj J 19, 325-30 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Hakomori S, Structure, organization, and function of glycosphin-golipids in membrane, Curr Opin Hematol 10, 16-24 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Hakomori S, Handa K, Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: Essential basis to define tumor malignancy, FEBS Letters 531, 88-92 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. Kasahara K, Sanai Y, Functional roles of glycosphingolipids in signal transduction via lipid rafts, Glycoconj J 17, 153-62 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Hakomori S, Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain, Glycocon J 17, 143-51 (2000).

    Article  CAS  Google Scholar 

  11. Fenderson BA, Zehavi U, Hakomori S, A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplanta-tion mouse embryos, while the free oligosaccharide is ineffective, J Exp Med 160, 1591-6 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S, Specific Interaction between Le x and Le x determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells, J Biol Chem 264, 9476-84 (1989).

    PubMed  CAS  Google Scholar 

  13. Iozzo RV, Matrix proteoglycans: From molecular design to cellular function, Annu Rev Biochem 67, 609-52 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. Truant S, Bruyneel E, Gouyer V, De Wever O, Pruvot FR, Mareel M, Huet G, Requirement of both mucins and proteoglycans in cell-cell dissociation and invasiveness of colon carcinoma HT-29 cells, Int J Cancer 104, 683-94 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Humphreys T, Chemical dissolution and in vitroreconstruction of sponge cell adhesions. Isolation and functional demonstration of the components involved, Dev Biol 8, 27-47 (1963).

    Article  CAS  Google Scholar 

  16. Wilson HV, On some phenomena of coalescence and regeneration in sponges, J Exp Zool 5, 245-58 (1907).

    Article  Google Scholar 

  17. Crossin KL, Cell adhesion molecules activate signaling networks that influence proliferation, gene expression, and differentiation, Ann NY Acad Sci 961, 159-60 (2002).

    Article  PubMed  Google Scholar 

  18. Cavallaro U, Christofori G, Cell adhesion and signalling by cad-herins and Ig-CAMs in cancer, Nat Rev Cancer 4, 118-32 (2004).

    PubMed  CAS  Google Scholar 

  19. Férnandez-Busquets X, Burger MM, Circular proteoglycans from sponges: First members of the spongican family, Cell Mol Life Sci 60, 88-112 (2003).

    Article  PubMed  Google Scholar 

  20. Henkart P, Humphreys S, Humphreys T, Characterization of sponge aggregation factor. A unique proteoglycan complex, Bio-chemistry 12, 3045-50 (1973).

    CAS  Google Scholar 

  21. Müller WE, Beyer R, Pondeljak V, Müller I, Zahn RK, Species-specific aggregation factor in sponges. XIII. Entire and core struc-ture of the large circular proteid particle from Geodia cydonium, Tissue Cell 10, 191-9 (1978).

    Article  PubMed  Google Scholar 

  22. Jarchow J, Fritz J, Anselmetti D, Calabro A, Hascall VC, Gerosa D, Burger MM, Fernandez-Busquets X, Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges, J Struct Biol 132, 95-105 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Misevic GN, Burger MM, The species-specific cell-binding site of the aggregation factor from the sponge Microciona proliferais a highly repetitive novel glycan containing glucuronic acid, fucose and mannose, J Biol Chem 265, 20577-84 (1990).

    PubMed  CAS  Google Scholar 

  24. Misevic GN, Burger MM,Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion, J Biol Chem 268, 4922-9 (1993).

    PubMed  CAS  Google Scholar 

  25. Turner SR, Burger MM, Involvement of carbohydrate group in the active site for surface guided reassociation of animal cells, Nature 244, 509-10 (1973).

    Article  PubMed  CAS  Google Scholar 

  26. Jumblatt JE, Schlup V, Burger MM, Cell-cell recognition: Specific binding of Microciona sponge aggregation factor to homotypic cells and the role of calcium ions, Biochem 19, 1038-42 (1980).

    Article  CAS  Google Scholar 

  27. Spillmann D, Thomas-Oates JE, van Kuik JA, Vliegenthart JF, Misevic G, Burger MM, Finne J, Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Mi-crociona prolifera, J Biol Chem 270, 5089-97 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. Spillmann D, Hard K, Thomas-Oates J, Vliegenthart JF, Misevic G, Burger MM, Finne J, Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the ma-rine sponge Microciona prolifera, J Biol Chem 268, 13378-87 (1993).

    PubMed  CAS  Google Scholar 

  29. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Carbohydrate self-recognition mediates marine sponge cellular adhesion, PNAS 98, 9419-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Beeley JG, Structural analysis. In Glycoprotein and Proteogly-can Techniques (Elsevier Science Publishers, Amsterdam, 1989), pp. 153-296.

    Google Scholar 

  31. Chon JWM, Mulvaney P, Sader JE, Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids, J Appl Phys 87, 3978-88 (2000).

    Article  CAS  Google Scholar 

  32. Müller DJ, Baumeister W, Engel A, Controlled unzipping of a bacterial surface layer with atomic force microscopy, Proc Natl Acad Sci USA 96, 13170-4 (1999).

    Article  PubMed  Google Scholar 

  33. Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt HJ, Misevic GN, Binding strength between cell adhesion proteogly-cans measured by Atomic Force Microscopy, Science 267, 1173-5 (1995).

    PubMed  CAS  Google Scholar 

  34. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, Proc Natl Acad Sci USA 93, 3477-81 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. Saleh OA, Sohn LL, Direct detection of antibody-antigen binding using an on-chip artificial pore, Proc Natl Acad Sci USA 100, 820-4 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penades S, Adhesion forces between Lewis x determinant antigens as measured by atomic force microscopy, Angew Chem Int Ed 40, 3052-5 (2001).

    Article  CAS  Google Scholar 

  37. Misevic GN, Finne J, Burger M, Involvement of carbohydrates as multiple low affinity interaction sites in the self-association of the aggregation factor from the marine sponge Microciona prolifera, J Biol Chem 262, 5870-7 (1987).

    PubMed  CAS  Google Scholar 

  38. Spillmann D, Carbohydrates in cellular recognition: From leucine-zipper to sugar-zipper?, Glycoconj J 11, 169-71 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Guerardel Y, Czeszak X, Sumanovski L, Karamanos Y, Popescu O, Strecker G, Misevic GN, Molecular fingerprinting of carbo-hydrate structures phenotypes of three porifera proteoglycan-like glyconectins, J Biol Chem 279, 15591-603 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. Perez S, Mouhous-Riou N, Nifant'ev NE, Tsvetkov YE, Bachet B, Imberty A, Crystal and molecular structure of a histo-blood group antigen involved in cell adhesion: The Lewis x trisaccharide, Glycobiology 6, 537-42 (1996).

    PubMed  CAS  Google Scholar 

  41. Cao Z, Zhao Z, Mohan R, Alroy J, Stanley P, Panjwani N, Role of the Lewis x glycan determinant in corneal epithelial cell adhesion and differentiation, J Biol Chem 276, 21714-23 (2001).

    PubMed  CAS  Google Scholar 

  42. de La Fuente JM, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penades S, Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions, Angew Chem Int Ed Engl 40, 2257-61 (2001).

    Article  PubMed  Google Scholar 

  43. Spillmann D, Burger MM, Carbohydrate/carbohydrate interactions. In Oligosaccharides in Chemistry and Biology, A Compre-hensive Handbook (Wiley-VCH Verlag GmbH, Weinheim, 2000), pp. 1061-91.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucior, I., Burger, M.M. Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition. Glycoconj J 21, 111–123 (2004). https://doi.org/10.1023/B:GLYC.0000044843.72595.7d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000044843.72595.7d

Navigation