Skip to main content
Log in

Studies of the carbohydrate-carbohydrate interaction between lactose and GM3 using Langmuir monolayers and glycolipid micelles

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

This paper describes studies of the carbohydrate-carbohydrate interaction (CCI) between micelles of a lactosyl lipid and monolayers of the glycosphingolipid GM3. The lactose Lac·GM3 interaction is involved in B16 melanoma cell adhesion and signaling processes, and a thorough understanding of the molecular details of this CCI is important for the design of new anti-adhesive and anti-metastatic agents. In this paper, we examine the influence of variations in divalent cations and subphase ionic strength on the Lac·GM3 interaction. Our results indicate that, in the absence of divalent cations, the Lac·GM3 CCI is strengthened at higher sodium chloride concentrations in the subphase. In contrast, when divalent cations are present in solution, the CCI is not as sensitive to ionic strength. These results suggest a role for both cation dependent as well as independent interactions in the Lac·GM3 CCI. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rojo J, Morales JC, Penadés S, Carbohydrate-carbohydrate in-teractions in biological and model systems, Top Curr Chem 218, 45-92 (2002) (recent comprehensive review).

    Article  CAS  Google Scholar 

  2. Kojima N, Hakomori S, Cell adhesion, spreading, and motility of GM3-expressing cells Based on glycolipid-glycolipid interaction, J Biol Chem 266, 17552-8 (1991).

    PubMed  CAS  Google Scholar 

  3. Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S, Cell adhesion in a dynamic flow system as compared to static system, J Biol Chem 267, 17264-70 (1992).

    PubMed  CAS  Google Scholar 

  4. Otsuji E, Park YS, Tashiro K, Kojima N, Toyokuni T, Hakomori S, Inhibition of B16 melanoma metastasis by administration of GM3-or Gg3-liposomes: Blocking adhesion of melanoma cells to endothelial cells (anti-adhesion therapy) via inhibition of GM3-Gg3Cer or GM3-LacCer interaction, Int J Oncol 6, 319-27 (1995).

    Google Scholar 

  5. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S, GM3-enriched microdomain involved in cell adhesion and signal trans-duction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells, J Biol Chem 273, 9130-8 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Iwabuchi K, Handa K, Hakomori S, Separation of "Glycosph-ingolipid Signaling Domain" from Caveolin-containing mem-brane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling, J Biol Chem 273, 33766-73 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y, Iwabuchi K, Nunomora S, Hakomori S, Effect of syn-thetic sialyl 2-1 sphingosine and other glycosylsphingosines on the structure and function of the glycosphingolipid signaling domain (GSD) in mouse melanoma B16 cells, Biochemistry 39, 2459-68 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Dean B, Ogushi H, Cai S, Otsuji E, Tashiro K, Hakomori S-I, Toyokuni T, Synthesis of multivalent β-lactosyl clusters as po-tential tumor metastasis inhibitors, Carbohydr Res 245, 175-92 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. Rojo J, Díaz V, De La Fuente JM, Segura I, Barrientos AG, Riese HH, Bernad A, Penades S, Gold glyconanoparticles as new tools in antiadhesive therapy, Chem Bio Chem 5, 291-7 (2004).

    PubMed  CAS  Google Scholar 

  10. Stewart RJ, Boggs JM, A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebro-side sulfate-containing liposomes: Dependence on the glycolipid ceramide composition, Biochemistry 32, 10666-74 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet J-M, Perez E, Sinäy P, Ultraweak sugar-sugar interactions for transient cell ad-hesion, Biophysical J 80, 1354-8 (2001).

    Article  CAS  Google Scholar 

  12. Hernáiz M, de la Fuente JM, Barrientos AG, Penadés S, A model system mimicking glycosphingolipid clusters to quantify carbohy-drate self-interactions by surface plasmon resonance, AngewChem Int Ed Engl 41, 1554-7 (2002).

    Article  Google Scholar 

  13. Matsuura K, Oda R, Kitakouji H, Kiso M, Kitajima K, Kobayashi K, Surface plasmon resonance study of carbohydrate-carbohydrate interaction between various gangliosides and Gg3-carrying polystyrene, Biomacromolecules 5, 937-41 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Matsuura K, Kitakouji H, Tsuchida A, Sawada N, Ishida H, Kiso M, Kobayashi K, Carbohydrate-carbohydrate interaction between glycolipids and glycoconjugate polystyrenes at the air-water inter-face, Chem Lett 1293-4 (1998).

  15. Matsuura K, Kitakouji H, Oda R, Morimoto Y, Asano H, Ishida H, Kiso M, Kitajima K, Kobayashi K, Selective expan-sion of the GM3 glycolipid monolayer induced by carbohydrate-carbohydrate interaction with Gg3 trisaccharide-bearing glycocon-jugate polystyrene at the air-water interface, Langmuir 18, 6940-5 (2002).

    Article  CAS  Google Scholar 

  16. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Car-bohydrate self-recognition mediates marine sponge cellular adhe-sion, Proc Natl Acad Sci 98, 9419-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Santacroce PV, Basu A, Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolay-ers, Angew Chem Int Ed Engl 42, 95-8 (2003).

    Article  CAS  Google Scholar 

  18. Houseman BT, Mrksich M, Model systems for studying polyva-lent carbohydrate binding interactions, Top Curr Chem 218, 1-44 (2002).

    Article  CAS  Google Scholar 

  19. When the monolayer is prepared using the unsaturated lipid di-oleoylphosphatidylcholine (DOPC) in place of DPPC, the non-specific component of Δπ dominates the insertion of LacC14. We attribute the facile non-specific insertion to the poorer packing of the unsaturated lipid.

  20. The glycolipid MaltC14, which has a similar surface activity (22 mN/m at 25 μM, subphase =1 mMCaCl2)toLacC14 was also considered as a reference glycolipid, as it too does not interact with GM3 via a CCI. Unfortunately, MaltC14 has a weak non-specific insertion component (Δπ for insertion into a 100% DPPC mono-layer: 6.4 mN/m, subphase =1mM CaCl2). The use of MaltC14 as a reference could potentially result in overestimation of the CCI component of the LacC14 response. We elected to err towards a conservative estimate of CCI and selected Tween-80 as the refer-ence compound, although this may result in an underestimation of contribution of CCI in some instances.

  21. Kojima N, Hakomori S-I, Specific interaction between ganglio-triaolsylceramide (Gg3) and siaosyllactosyl ceramide (GM3)as a basis for specific cellular recognition between lymphoma and melanoma cells, J Biol Chem 264, 20159-62 (1989).

    PubMed  CAS  Google Scholar 

  22. Czarniecki MF, Thornton ER, 13C NMR chemical shift titra-tion of metal ion-carbohydrate complexes. An unexpected di-chotomy for Ca+2 binding between anomeric derivatives of N-acetylneuraminic acid, Biochem Biophys Res Comm 74, 553-8 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. Bugg CE, Calcium binding to carbohydrates. Crystal structure of a hydrated calcium bromide complex of lactose, J AmChem Soc 95, 908-13 (1973).

    Article  CAS  Google Scholar 

  24. Angyal SJ, Complexes of metal cations with carbohydrates in so-lution, Adv Carb Chem Biochem 47, 1-43 (1989).

    Article  CAS  Google Scholar 

  25. Jaques LW, Brown EB, Barrett JM, Brey WS, Weltner WJ, Sialic acid. A calcium binding carbohydrate, J Biol Chem 252, 4533-8 (1977).

    PubMed  CAS  Google Scholar 

  26. Whitfield DM, Stojkovski S, Sarkar B, Metal coordination to car-bohydrates. Structures and function, Coord Chem Rev 122, 171-225 (1993).

    Article  CAS  Google Scholar 

  27. Geyer A, Gege C, Schmidt RR, Calcium-dependent carbohydrate-carbohydrate recognition between Lewisx blood group antigens, Angew Chem Int Ed Engl 39, 3245-9 (2000).

    Article  PubMed  Google Scholar 

  28. Henry B, Desvaux H, Pristchepa M, Berthault P, Zhang YM, Mallet JM, Esnault J, Sinay P, NMR study of a Lewis pentasaccharide derivative: Solution structure and interaction with cations, Carbo-hydr Res 315, 48-62 (1999).

    Article  CAS  Google Scholar 

  29. Hasegawa T, Sasaki T, Glyco-helix: Parallel lactose-lactose in-teractions stabilized an α-helical structure of multi-glycosylated peptide, Chem Commun 978-9 (2003).

  30. Menikh A, Nyholm P-G, Boggs JM, Characterization of the inter-action of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by fourier transform infrared spectroscopy and molecular modeling, Biochemistry 36, 3438-47 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. de la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Cañada J, Fernándex A, Penadés S, Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions, Angew Chem Int Ed Engl 40, 2258-61 (2001).

    Article  CAS  Google Scholar 

  32. Kojima N, Fenderson B, Stroud M, Goldberg R, Habermann R, Toyokuni T, Hakomori S, Further studies on cell adhesion based on Lex-Lex interaction, with new approaches: Embryoglycan aggre-gation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Lex expression, Glycoconj J 11, 238-48 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. While high NaCl concentrations clearly affect membrane pack-ing and micelle properties, this effect is non-specific and in-fluences the insertion behavior of both LacC14 and Tween-80 (Table 1).

  34. AFM studies of transferred Langmuir monolayers of GM1 in DOPC and DOPC/DPPC mixed monolayers have provided direct evidence for ganglioside clustering under certain conditions: Vie V, Van Mau N Lesniewska E, Goudonnet JP, Heitz F, Le Grimellec C, Langmuir 14, 4574-83 (1998). We had sought to mimic these conditions with GM3 in place of GM1,but the high levels of non-specific insertion precluded further studies.

    Article  CAS  Google Scholar 

  35. Yu ZW, Calvert TL, Leckband D, Molecular forces between mem-branes displaying neutral glycosphingolipids: Evidence for carbo-hydrate attraction, Biochemistry 37, 1540-50 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. Kulkarni K, Snyder DS, McIntosh TJ, Adhesion between cerebro-side bilayers, Biochemistry 38, 15264-71 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. Weis WI, Drickamer K, Structural basis of lectin-carbohydrate recognition, Annu Rev Biochem 65, 441-473 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Boggs JM, Menikh A, Rangaraj G, Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilay-ers, Biophys. J 78, 874-85 (2000).

    PubMed  CAS  Google Scholar 

  39. Sasaki DY, Waggoner TA, Last JA, Alam TM, Crown ether func-tionalized lipid membranes: Lead ion recognition and molecular recognition, Langmuir 18, 3714-21 (2002).

    Article  CAS  Google Scholar 

  40. Ariga K, Kunitake T, Molecular Recognition at air-water and related interfaces: Complementary hydrogen bonding and multisite interaction, Acc Chem Res 31, 371-8 (1998).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santacroce, P.V., Basu, A. Studies of the carbohydrate-carbohydrate interaction between lactose and GM3 using Langmuir monolayers and glycolipid micelles. Glycoconj J 21, 89–95 (2004). https://doi.org/10.1023/B:GLYC.0000044841.12706.12

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000044841.12706.12

Navigation