Skip to main content
Log in

The structure of the oligosaccharides of N-cadherin from human melanoma cell lines

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site—WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM™ Cell Invasion Assay (Chemicon).

N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with α2–6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily α-fucosylated complex type chains with α2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration.

The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freemont AJ, Hoyland JA, Cell adhesion molecules, J Clin Pathol 49, 321M–30M (1996).

    Google Scholar 

  2. Li G, Satyamoorthy K, Herlyn M, Dynamic of cell interactions and communications during melanoma development, Crit Rev Oral Med 13, 62–70 (2002).

    Article  CAS  Google Scholar 

  3. Aplin A, Howe A, Juliano RL, Cell adhesion molecules, signal transduction and cell growth, Curr Option Cell Biol 11, 737–44 (1999).

    Article  CAS  Google Scholar 

  4. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA, Exogenous expression of N-cadherin in breast cancer cell induces cell migration, invasion and metastasis, J Cell Biol 148, 779–90 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. Johnson J, Cell adhesion molecules in the development and progression of malignant melanoma, Cancer and Metastasis Rev 18, 345–57 (1999).

    Article  CAS  Google Scholar 

  6. Williams MR, Duncan G, Riach RA, Webb SF, Acetylcholine receptors are coupled to mobilization of intracellular calcium in cultured human lens cell, Exp Eye Res 57, 381–84 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. Sanders DS, Blessing K, Hassan GA, Bruton R, Marsden JR, Jankowski J, Alterations in cadherin and catenin expression during the biological progression of melanocytic tumors, Br Med J 52, 151–7 (1999).

    CAS  Google Scholar 

  8. Hirohashi S, Inactivation of the E-cadherin-mediated cell adhesion system in human cancers, Am J Pathol 153, 333–9 (1998).

    PubMed  CAS  Google Scholar 

  9. Hsu M, Meier F, Nesbit M, Hsu J, Belle P, Elder D, Herlyn M. E-cadherin expression in melanoma cells restores keratinocytemediated growth control and down-regulates expression of invasion-related adhesion receptors, Am J Pathol 156, 1515–25 (2000).

    PubMed  CAS  Google Scholar 

  10. Li G, Satyamoorthy K, Herlyn M, N-cadherin-mediated intercellular interactions survival and migration of melanoma cells, Cancer Res 61:3819–25 (2001).

    PubMed  CAS  Google Scholar 

  11. Hsu M, Wheelock M, Johnson K, Herlyn M, Shift in cadherin profiles between human normal melanocytes and melanomas, Soc Investig Dermato 1, 188–94 (1996).

    CAS  Google Scholar 

  12. Dennis JW, Granovsky M, Warren Ch E, Glycoprotein glycosylation and cancer progression, Biochim Biophys Acta 1473, 21–34 (1999).

    PubMed  CAS  Google Scholar 

  13. Dall'Olio F, Protein glycosylation in cancer biology: An overview, J Clin Pathol 49, 126M-35M (1996).

    Google Scholar 

  14. Dennis JW, Granovsky M, Warren Ch E, Protein glycosylation in development and disease, BioEssays 21, 412–21 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. Pierce M, Buckhaults P, Chen L, Fregien N, Regulation of Nacetylglukosaminyltransferase V and Asn-Linked oligosaccharide β(1,6)-branching by a growth factor signaling pathway and effects on cell adhesion and metastatic potential, Glycoconj J 14, 623–30 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Datti A, Donovan R, Korczak B, Dennis JW, A homogeneous cellbased assay to identify N-liked carbohydrate processing inhibitors, Anal Biochem 280, 137–42 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Demetriou M, Nabi I, Coppolino M, Dedhar S, Denis J, Reduced contract-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V, J Cell Biol 130, 383–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Giard DJ, Aaronson SA, Todaro GJ, Amstein P, Kersey JH, Dosik H, Parks WP, in vitrocultivation of human tumors: Establishment of cell lines derived from a series of solid tumors, J Natl Cancer Inst 51, 1417–23 (1973).

    PubMed  CAS  Google Scholar 

  19. Ciołczyk-Wierzbicka D, Gil D, Hoja-Łukowicz D, Lityńska A, Laidler P. Carbohydrate moieties of N-cadherin from human melanoma ell lines, Acta Biochem Polon 4, 991–8 (2002).

    Google Scholar 

  20. Küster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ, Sequencing of N-linked oligosaccharides directly from protein gels: Ingel deglycosylation followed by Matrix-assisted laser desorption/ ionisation mass spectrometry and normal-phase high-performance liquid chromatography, Anal Biochem 250, 82–01 (1997).

    Article  PubMed  Google Scholar 

  21. Dennis JW, N-linked oligosacharide processing and tumor cell biology, Cancer Bio 2, 411–20 (1991).

    CAS  Google Scholar 

  22. Dufour S, Beauvais-Jauneau A, Delouvee A, Thiery JP, Differential function of N-cadherin and cadherin-7 in the control of embryonic cells motility, J Cell Biol 146, 501–16 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Harvey B, Toth C, Wagner H, Steele G, Thomas P, Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases, Cancer Res 52, 1775–9 (1992).

    PubMed  CAS  Google Scholar 

  24. Laidler P, Gil D, Pituch-Noworolska A, Ciołczyk D, Ksizek D, Przybyło M, Lityńska A, Expression of β1-integrins and Ncadherin in bladder cancer and melanoma cell lines, Acta Biochim Polon 47, 1159–70 (2000).

    PubMed  CAS  Google Scholar 

  25. Bussemakers MJ, Van Bokhoven A, Tomita K, Jansen CF, Schalken JA, Complex cadherin expression in human prostate, Int J Cancer 85, 446–50 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Herlyn M, Berking C, Li G, Satyamoorthy K, Lessons from melanocyte development for understanding the biological events in naevus and melanoma formation, Melanoma Res 10, 303–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Nieman M, Prudoff R, Johnson K, Wheelock M, N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression, The J Cell Biol 147, 631–43 (1999).

    Article  CAS  Google Scholar 

  28. Ruoslahti E, Obrink B, Common principles in cell adhesion, Exp Cell Res 227, 1–11 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Laidler P, Lityńska A, Tumor cell N-glycans in metastasis, Acta Biochim Polon 44, 343–58 (1997).

    PubMed  CAS  Google Scholar 

  30. Ortoft TF, Vestergaard TM, Clinical aspect of altered glycosylation of glycoproteins in cancer, Electroforesis 20, 362–71 (1999).

    Google Scholar 

  31. Dimitroff Ch Pera P, Dall'Olio F, Matta K, Chandrasekaran EV, Lau J, Bernacki R, Cell surface N-acetylneuraminic acid 2,3α-galactoside-dependent intercellular adhesion of human colon cancer cells, Biochem Biophys Res Commun 256, 631–6 (1999).

    Article  Google Scholar 

  32. Dall'Olio F, Chiricolo M, Ceccarelli C, Minni F, Marrano D, Santini D, β-Galactoside α2,6-sialyltransferase in human colon cancer: Contribution of multiple transcripts to regulation of enzyme activity and reactivity with Sambucus Nigra Agglutinin, Int J Cancer 88, 58–65 (2000).

    Article  PubMed  Google Scholar 

  33. Petretti T, Kemmer W, Schulze W, Schlag PM, Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases, Int J Gastroenterol Hepatol 46, 359–66 (2000).

    CAS  Google Scholar 

  34. Lityńska A, Przybyło M, PochećE, Hoja-Łukowicz D, Ciołczyk D, Laidler P, Gil D, Comparison of the lectin-binding pattern between different human melanoma cell lines, Melanoma Res 11, 205–12 (2001).

    Article  PubMed  Google Scholar 

  35. Pousset D, Piller V, Bureaud, Monsigny M, Piller F, Increased α2-6 sialylation of N-glycans in a Transgenic Mouse Model of Hepatocellular Carcinoma, Cancer Res 57, 4249–56 (1997).

    PubMed  CAS  Google Scholar 

  36. Wagner H, Thomas P, Wolf B, Rapoza A, Steele G, Inhibition of sialic acid incorporation prevent hepatic metastases, Arch Surg 125, 351–4 (1990).

    PubMed  CAS  Google Scholar 

  37. Petretti T, Schulze B, Schlag PM, Kemmner W, Altered mRNA expression of glycosyltransferases in human gastric carcinomas, Biochim Biophys Acta 1428, 209–18 (1999).

    PubMed  CAS  Google Scholar 

  38. Yago K, Zenita K, Ginya H, Expression of alpha-(1,3)-fucosyltransferases which synthesize sialyl Le(x) and sialyl Le(a) the carbohydrate ligands for E-and P-selectins in human malignant cell lines, Cancer Res 53, 5559–65 (1993).

    PubMed  CAS  Google Scholar 

  39. Withers D, Hakomori S, Human alfa 1,3 fucosyltransferase IV (FUT-IV)Gene expression is regulated by Elk-1 in the U937 cell line, J Biol Chem 275, 40588–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. Chandrosekaran EV, Chawda R, Locke RD, Piskorz CF, Matta KL Biosynthesis of the carbohydrate antigenic determinants, Globo H, blood group H and Lewis b: A role for prostate cancer cell alpha 1,2-L-fucosylotransferase, Glycobiology 12(3), 153–62 (2002).

    Article  Google Scholar 

  41. Bradford M, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal Biochem 72, 248–54 (1976).

    Article  PubMed  CAS  Google Scholar 

  42. Hoja-Łukowicz D, Ciołczyk D, Bergquist J, Lityńska A, Laidler P, High-mannose-type oligosaccharides from human placental arylsulfatase A are core fucosylated as confirmed by MALDI-MS, Glycobiology 10, 551–7 (2000).

    Article  PubMed  Google Scholar 

  43. Laemmli, Cleavage of structural proteins during assembly of the head of bacteriophage T4, Nature 227, 680–5 (1970).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Ciołczyk-Wierzbicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciołczyk-Wierzbicka, D., Amoresano, A., Casbarra, A. et al. The structure of the oligosaccharides of N-cadherin from human melanoma cell lines. Glycoconj J 20, 483–492 (2003). https://doi.org/10.1023/B:GLYC.0000038294.72088.b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000038294.72088.b0

Navigation