Skip to main content
Log in

Galectin-1: A bifunctional regulator of cellular proliferation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectin-1 has demonstrated a diverse range of activities in relation to cell survival and proliferation. In different circumstances, it acts as a mitogen, as an inhibitor of cell proliferation, and as a promoter of cellular apoptosis. Many of these activities, particularly the mitogenic and apoptotic responses, follow from the interaction of galectin-1 with cell-surface β-galactoside ligands, but there is increasing evidence for protein-protein interactions involving galectin-1, and for a β-galactoside-independent cytostatic mechanism. The bifunctional nature of galectin-1, in conjunction with other experimental variables, makes it difficult to assess the overall outcomes and significance of the growth-regulatory actions in many previous investigations. There is thus a need for well-defined experimental cross-correlation of observations, for which specific loss-of-function galectin-1 mutants will be invaluable. Unsurprisingly, in view of this background, the interpretation of the actions of galectin-1 in developmental situations, both normal and neoplastic, is often very complex. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipsick JS, Beyer EC, Barondes SH, Kaplan NO, Lectins from chicken tissues are mitogenic for thy-1 negative murine spleen cells, Biochem Biophys Res Comm 97, 56-61 (1980).

    Google Scholar 

  2. Pitts MJ, Yang DCH, Mitogenicity and binding properties of β-galactoside-binding lectin from chick-embryo kidney, Biochem J 195, 435-9 (1981).

    Google Scholar 

  3. Sanford GL, Harris-Hooker S, Stimulation of vascular cell proliferation by β-galactoside specific lectins, FASEB J 4, 2912-8 (1990).

    Google Scholar 

  4. Levi G, Turrab-Hazdai R, Teichberg VI, Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits, Eur J Immunol 13, 500-7 (1983).

    Google Scholar 

  5. Offner H, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, Vandenbark AA, Recombinant human β-galactoside binding lectin supresses clinical and histological signs of experimental autoimmune encephalomyelitis, J Neuroimmunol 28, 177-84 (1990).

    Google Scholar 

  6. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ, Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells, J Expl Med 181, 877-87 (1995).

    Google Scholar 

  7. Crabtree GR, Contingent genetic regulatory events in T lymphocyte activation, Science 243, 355-61 (1989).

    Google Scholar 

  8. Walzel H, Hirabayashi J, Ken-Itchi K, Brock J, Neels P, Cell calcium signalling induced by endogenous lectin carbohydrate interaction in the Jurkat T cell line, Glycoconjugate J 13, 99-105 (1996).

    Google Scholar 

  9. Walzel HSU, Neels P, Brock J, Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45, Immunol Lett 67, 193-202 (1999).

    Google Scholar 

  10. Fouillit M, Poirier F, Monostori E, Raphael M, Bladier D, Joubert-Caron R, Caron M, Analysis of galectin 1-mediated cell signaling by combined precipitation and electrophoresis techniques, Electrophoresis 21, 275-80 (2000).

    Google Scholar 

  11. Walzel HSU, Blach M, Hirabayashi J, Kasai K-I, Brock J, Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells, Glycobiology 10, 131-40 (2000).

    Google Scholar 

  12. Vespa GNR, Lewis LA, Kozak KR, Moran M, Nguyen JT, baum LG, Miceli MC, Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation, J Immunol 162, 799-806 (1999).

    Google Scholar 

  13. Maeda N, Kawada N, Seki S, Arakawa T, Ikeda K, Iwao H, Okuyama H, Hirabayashi J, Kasai K, Yoshizato K, Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways, J Biol Chem 278, 18938-44 (2003).

    Google Scholar 

  14. Walzel H, Blach M, Hirabayashi J, Arata Y, Kasai K-I, Brock J, Galectin-induced activation of the transcription factors NFAT and AP-1 in human Jurkat T-lymphocytes, Cellular Signalling 14, 861-8 (2002).

    Google Scholar 

  15. Perillo NL, Pace KE, Seilhamer JJ, Baum LG, Apoptosis of T cells mediated by galectin-1, Nature 378, 736-9 (1995).

    Google Scholar 

  16. Fouillit M, Levi-Strauss M, Giudicelli V, Lutomski D, Bladier D, Caron M, Joubert-Caron R, Affinity purification and characterization of recombinant human galectin-1, J Chromatog B 706, 167-71 (1998).

    Google Scholar 

  17. Fajka-Boja R, Szemes M, Ion G, Legradi A, Caron M, Monostori E, Receptor tyrosine phosphatase CD45 binds galectin-1 but does not mediate its apoptotic signal in T cell lines, Immunol Lett 82, 149-54 (2003).

    Google Scholar 

  18. Rabinovich GA, Rubinstein N, Toscano MA, Role of galectins in inflammatory and immunomodulatory processes, Biochim Biophys Acta 1572, 274-84 (2002).

    Google Scholar 

  19. Yang R-Y, Liu F-T, Galectins in cell growth and apoptosis, Cell Mol Life Sci 60, 267-76 (2003).

    Google Scholar 

  20. Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C, Liu F-T, Iacobelli S, Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23, 313-20 (2002).

    Google Scholar 

  21. Wells V, Mallucci L, Properties of a cell growth inhibitor produced by mouse fibroblasts, J Cell Physiol 117, 148-54 (1983).

    Google Scholar 

  22. Wells V, Mallucci L, Identification of an autocrine negative growth factor: Mouse β-galactoside-binding protein is a cytostatic factor and cell growth regulator, Cell 64, 91-7 (1991).

    Google Scholar 

  23. Wells V, Mallucci L, Molecular expression of the negative growth factor murine β-galactoside binding protein (mGBP), Biochim Biophys Acta 1121, 239-44 (1992).

    Google Scholar 

  24. Wells V, Davies D, Mallucci L, Cell cycle arrest and induction of apoptosis by β galactoside binding protein (βGBP) in human mammary cancer cells. A potential new approach to cancer control, Eur J Cancer 35, 978-83 (1999).

    Google Scholar 

  25. Cho M, Cummings RC, Characterisation of monomeric forms of galectin-1 generated by site-directed mutagenesis, Biochemistry 35, 13081-8 (1996).

    Google Scholar 

  26. Blaser C, Kaufmann M, Muller C, Zimmermann C, Wells V, Mallucci L, Pircher H, β-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells, Eur J Immunol 28, 2311-9 (1998).

    Google Scholar 

  27. Novelli F, Allione A, Wells V, Forni G, Mallucci L, Negative cell cycle control of human T cells by β-galactoside binding protein (β GBP): Induction of programmed cell death in leukaemic cells, J Cell Physiol 178, 102-8 (1999).

    Google Scholar 

  28. Allione A, Wells V, Forni G, Mallucci L, Novelli F, β-galactoside binding protein (β GBP) alters the cell cycle, up-regulates expression of the α-and β-chains of the interferon-γ receptor, and triggers IFN-γ-mediated apoptosis of activated human T lymphocytes, J Immunol 161, 2114-9 (1998).

    Google Scholar 

  29. Bratt T, Scott GK, Protein proteinase inhibitors as modulators of mammalian cell growth, Protein and Peptide Lett 2, 391-401 (1995).

    Google Scholar 

  30. Scott GK, Proteinases and proteinase inhibitors in tumor cell growth and metastasis, Cancer J 10, 80-6 (1997).

    Google Scholar 

  31. Manilal S, Scott GK, Tse CA, Inhibition of an endogenous growth-related proteinase enhances the recovery of a negative growth regulator from cultured human cells, Cell Biol Intl 17, 317-23 (1993).

    Google Scholar 

  32. Adams L, Scott GK, Weinberg CS, Biphasic modulation of cell growth by recombinant human galectin-1, Biochim Biophys Acta 1312, 137-44 (1996).

    Google Scholar 

  33. Scott K, Zhang J, Partial identification by site-directed mutagenesis of a cell growth inhibitory site on the human galectin-1 molecule, BMC Cell Biol 3, 3 (2002).

    Google Scholar 

  34. Abbott WM, Feizi T, Soluble 14 kDa β-galactoside-specific bovine lectin, J Biol Chem 266, 5552-7 (1991).

    Google Scholar 

  35. Bourne Y, Bolgiano B, Liao DI, Strecker G, Cantau P, Herzberg O, Feizi T, Cambillau C, Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides, Nature Structural Biology 1, 863-70 (1994).

    Google Scholar 

  36. Liao D, Kapadia G, Ahmed H, Vasta GR, Herzberg O, Structure of S-lectin, a developmentally regulated vertebrateβ-galactosidebinding protein, Proc Natl Acad Sci USA 91, 1428-32 (1994).

    Google Scholar 

  37. Hirabayashi J, Kasai KI, Effect of amino acid substitution by site-directed mutagenesis on the carbohydrate recognition and stability of human 14 kDa β-galactoside-binding lectin, J Biol Chem 266(23), 648-53 (1991).

    Google Scholar 

  38. Sharma SK, Evans DB, Vosters AF, Mcquade TJ, Tarpley WG, Metal affinity chromatography of recombinant HIV-1 reverse transcriptase containing a human renin cleavable metal binding domain, Biotech Appl Biochem 14, 69-81 (1991).

    Google Scholar 

  39. Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM, Xray crystal structure of the human dimeric S-lac lectin, L-14-II, in complex with lactose at 2.9A resolution, J Biol Chem 268, 27034-8 (1993).

    Google Scholar 

  40. Iglesias MM, Rabinovich GA, Ivanovic V, Sotomayor C, Wolfenstein-Todel C, Galectin-1 from ovine placenta Aminoacid sequence, physicochemical properties and implications in T-cell death, Eur J Biochem 252, 400-7 (1998).

    Google Scholar 

  41. Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T, Oxidised galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties, Eur J Biochem 267, 2955-64 (2000).

    Google Scholar 

  42. Fukaya K, Hasegawa M, Mashitani T, Kadoya T, Horie H, Hayashi Y, Fujisawa H, Tachibana O, Kida S, Yamashita J, Oxidized galectin-1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury, J Neuropathol Exp Neurol 62, 162-72 (2003).

    Google Scholar 

  43. Yamaoka K, Ohno S, Kawasaki H, Suzuki K, Overexpression of a β-galactoside-binding protein causes transformation of BALB 3T3 fibroblast cells, Biochem Biophys Res Commun 179, 272-9 (1991).

    Google Scholar 

  44. Yamaoka K, Ingendoh A, Tsubuki S, Nagai Y, Sanai Y, Structural and functional characterisation of a novel tumor-derived rat galectin-1 having transforming growth factor (TGF) activity: The relationship between intramolecular disufide bridges and TGF activity, J Biochem (Tokyo) 119, 878-86 (1996).

    Google Scholar 

  45. Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y, Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation, Oncogene 20, 7486-93 (2001).

    Google Scholar 

  46. Elad-Sfadia G, Haklai R, Ballan E, Gabius H-J, Kloog Y, Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase, J Biol Chem 277, 37169-75 (2002).

    Google Scholar 

  47. Moiseeva EP, Spring EL, Baron JH, de Bono, Galectin 1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix, J Vasc Res 36, 47-58 (1999).

    Google Scholar 

  48. Moiseeva EP, Javed Q, Spring EL, de Bono DP, Galectin 1 is involved in vascular smooth muscle cell proliferation, Cardiovascular Res 45, 493-502 (2000).

    Google Scholar 

  49. Moiseeva EP, Williams B, Samani NJ, Galectin 1 inhibits incorporation of vitronectin and chondroitin sulfate B into the extracellular matrix of human vascular smooth muscle cells, Biochim Biophys Acta 1619, 125-32 (2003).

    Google Scholar 

  50. Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius H-J, Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture, J Biol Chem 273, 11205-11 (1998).

    Google Scholar 

  51. Kopitz J, von Reitzenstein C, Andre S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J, Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3, J BiolChem 276, 35917-23 (2001).

    Google Scholar 

  52. Amano M, Galvan M, He J, Baum LG, The ST6Gal I sialyl-transferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death, J Biol Chem 278, 7469-75 (2003).

    Google Scholar 

  53. Abad-Rodriguez J, Vallejo-Cremades M, Nieto-Sampedro M, Control of glial number: Purification from mammalian brain extracts of an inhibitor of astrocyte division, Glia 23, 156-68 (1998).

    Google Scholar 

  54. Correa SG, Sotomayor CE, Aoki MP, Maldonado CA, Rabinovich GA, Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophage, Glycobiology 13, 119-28 (2003).

    Google Scholar 

  55. Moses HL, Yang EY, Pietenpol JA, TGFβ stimulation and inhibition of cell proliferation: New mechanistic insights, Cell 63, 245-7 (1990).

    Google Scholar 

  56. Goldring K, Jones GE, Watt DJ, A factor implicated in the myogenic conversion of nonmuscle cells derived from the mouse dermis, Cell Trasplantation 9, 519-29 (2000).

    Google Scholar 

  57. Goldring K, Jones GE, Thiagarajah R, Watt DJ, The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro, J Cell Sci 115, 355-66 (2002).

    Google Scholar 

  58. Gu M, Wang W, Wong WK, Cooper DNW, Kaufman SJ, Selective modulation of the interaction of α7β1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation, J Cell Sci 107, 175-81 (1994).

    Google Scholar 

  59. Nishioka T, Sakumi K, Miura T, Tahara K, Horie H, Kadoya T, Nakabeppu Y, Fos B gene products trigger cell proliferation and morphological alteration with an increased expression of a novel processed form of galectin-1 in the rat 3Y1 embryo cell line, J Biochem (Japan) 131, 653-61 (2002).

    Google Scholar 

  60. Lutomski D, Fouillit M, Bourin P, Mellottee D, Denize N, Pontet M, Bladier D, Caron M, Joubert-Caron R, Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation, Glycobiology 7, 1193-9 (1997).

    Google Scholar 

  61. Gauthier L, Rossi B, Roux F, Termine E, Schiff C, Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering, Proc Natl Acad Sci USA 99, 13014-9 (2002).

    Google Scholar 

  62. Barondes SH, Bifunctional properties of lectins: Lectins rede-fined, Trends Biochem Sci 13, 480-2 (1988).

    Google Scholar 

  63. Kilpatrick DC, Animal lectins: A historical introduction and overview, Biochim Biophys Acta 1572, 187-97 (2002).

    Google Scholar 

  64. Cebo C, Vergoten G, Zanetta, J-P, Lectin activities of cytokines: Functions and putative carbohydrate-recognition domains, Biochim Biophys Acta 1572, 422-34 (2002).

    Google Scholar 

  65. Dettin L, Rubinstein N, Aoki A, Rabinovich GA, Maldonado CA, Regulated expression and ultrastructural localization of galectin-1, a proapoptotic beta-galactoside-binding lectin, during spermatogenesis in rat testis, Biol Reproduction 68, 51-9 (2003).

    Google Scholar 

  66. Andersen H, Jensen ON, Moiseeva EP, Eriksen EF, A proteome study of secreted prostatic factors affecting osteoblastic activity: Galectin-1 is involved in differentiation of human bone marrow stromal cells, J Bone &; Mineral Res 18, 195-203 (2003).

    Google Scholar 

  67. Fukuda M, Cell surface glycoconjugates as onco-differentiation markers in hematopoetic cells, Biochim Biophys Acta 780, 119- 50 (1985).

    Google Scholar 

  68. Raz A, Meromski L, Lotan R, Differential expression of endogenous lectins on the surface of nontumorigenic, tumorigenic and metastatic cells, Cancer Res 46, 3667-72 (1986).

    Google Scholar 

  69. Berberat PO, Friess H, Wang L, Zhu Z, Bley T, Frigeri L, Zimmermann A, Büchler M, Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer, J Histochem Cytochem 49, 539-49 (2001).

    Google Scholar 

  70. Lotan R, Ito H, Yasui W, Yokozaki H, Lotan D, Tahara E, Expression of a 31-kDa lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas, Int J Cancer 56, 474-80 (1994).

    Google Scholar 

  71. Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT, Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma, Int J Cancer 81, 519-26 (1999).

    Google Scholar 

  72. Schoeppner HL, Raz A, Ho SB, Bresalier RS, Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon, Cancer 75, 2818-26 (1995).

    Google Scholar 

  73. Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A, Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system, Cancer 80, 776-87 (1997).

    Google Scholar 

  74. Sanjuan X, Fernandez PL, Castells A, Castronovo V, van den Brule F, Liu FT, Cardesa A, Campo E, Differential expression of galectin-3 and galectin-1 in colorectal cancer progression, Gastroenterology 113, 1906-15 (1997).

    Google Scholar 

  75. Nagy N, Legendre H, Engels O, Andre S, Kaltner H, Wasano K, Zick Y, Pector JC, Decaestecker C, Gabius HJ, Salmon I, Kiss R, Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting, Cancer 97, 1849- 58 (2003).

    Google Scholar 

  76. Lotz MM, Andrews CW, Korzelius CA, Lee EC, Steele GD, Clarke A, Mercurio AM, Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma, Proc Natl Acad Sci USA 90, 3466-70 (1993).

    Google Scholar 

  77. Hittelet A, Legendre H, Nagy N, Bronckart Y, Pector J-C, Salmon I, Yeaton P, Gabius H-J, Kiss R, Camby I, Upregulation of galectins-1 and-3 in human colon cancer and their role in regulating cell migration, Intl J Cancer 103, 370-79 (2003).

    Google Scholar 

  78. Danguy A, Camby I, Kiss R, Galectins and cancer, Biochim Biophys Acta 1572, 285-93 (2002).

    Google Scholar 

  79. Gabius HJ, Andre S, Gunsenhauser I, Kaltner H, Kayser G, Kopitz J, Lahm H, Harms D, Szymas J, Kayser K, Association of galectin-1-but not galectin-3-dependent parameters with proliferation activity in human neuroblasomas and small cell lung carcinomas, Anticancer Res 22, 405-10 (2002).

    Google Scholar 

  80. Chiariotti L, Berlingieri M, De Rosa P, Battaglia C, Berger N, Bruni CB, Fusco A, Increased expression of the negative growth factor, galactoside-binding protein, genenin transformed cells and in human thyroid carcinomas, Oncogene 7, 2507-11 (1992).

    Google Scholar 

  81. Savin SB, Cvejic DS, Jankovic MM, Expression of galectin-1 and galectin-3 in human fetal thyroid gland, J Histochem Cytochem 51, 479-83 (2003).

    Google Scholar 

  82. Chiariotti L, Berlingieri MT, Battaglia C, Benvenuto G, Martelli ML, Salvatore P, Chiappetta G, Bruni CB, Fusco A, Expression of galectin-1 in normal human thyroid gland and in differentiated and poorly differentiated thyroid tumors, Intl J Cancer 64, 171- 75 (1995).

    Google Scholar 

  83. Xu XC, el-Naggar AK, Lotan R, Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications, Am J Pathol 147, 815-22 (1995).

    Google Scholar 

  84. Fernandez PL, Merino MJ, Gomez M, Campo E, Medina T, Castronovo V, Sanjuan X, Cardesa A, Liu FT, Sobel ME, Galectin-3 and laminin expression in neoplastic and nonneoplastic thyroid tissue, J Pathol 181, 80-6 (1997).

    Google Scholar 

  85. Cvejic D, Savin S, Paunovic I, Tatic S, Havelka M, Sinadinovic J, Immunohistochemical localization of galectin-3 in malignant and benign human thyroid tissue, Anticancer Res 18, 2637-41 (1998).

    Google Scholar 

  86. Orlandi F, Saggiorato E, Pivano G, Puligheddu B, Termine A, Cappia S, De Giuli P, Angeli A, Galectin-3 is a presurgical marker of human thyroid carcinoma, Cancer Res 58, 3015-20 (1998).

    Google Scholar 

  87. Yamaoka K, Mishima K, Nagashima Y, Asai A, Sanai Y, Kirino T, Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells, J Neurosci Res 59, 722-30 (2000).

    Google Scholar 

  88. Rorive S, Belot N, Decaestecker C, Lefranc F, Grodower L, Micik S, Maurage CA, Kaltner H, Ruchoux MM, Danguy A, Gabius HJ, Salmon I, Kiss R, Camby I, Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchima, Glia 33 241-55 (2001).

    Google Scholar 

  89. Camby I, Belot N, Lefranc F, Sadeghi N, de Launoit Y, Kaltner H, Musette S, Darro F, Danguy A, Salmon I, Gabius HJ, Kiss R, Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases, J Neuropathol Exp Neurol 61, 585-96 (2002).

    Google Scholar 

  90. Van den Brule FA, Buicu C, Baldet M, Sobel M, Cooper D, Marschal P, Castronovo V, Galectin-1 modulates human melanoma cell adhesion to laminin, Biochem Biophys Res Commun 209, 760-67 (1995).

    Google Scholar 

  91. Van den Brule FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu FT, Cooper DN, Pieters C, Sobel ME, Castronovo V, Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma, Hum Pathol 27, 1185-91 (1996).

    Google Scholar 

  92. Van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V, Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin, Lab Invest 83, 377-86 (2003).

    Google Scholar 

  93. Cindolo L, Benvenuto G, Salvatore P, Pero R, Salvatore G, Mirone V, Prezioso D, Altieri V, Bruni CB, Chiariotti L, Galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas, Intl J Cancer 84, 39-43 (1999).

    Google Scholar 

  94. Van den Brule FA, Waltregny D, Castronovo V, Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients, J Pathol 193, 80-7 (2001).

    Google Scholar 

  95. Francois C, vanVelthoven R, De Lathouwer O, Moreno C, Peltier A, Kaltner H, Salmon I, Gabius HJ, Danguy A, Decaestecker C, Kiss R, Galectin-1 and galectin-3 binding pattern expression in renal cell carcinomas, Am J Clin Pathol 112, 194-203 (1999).

    Google Scholar 

  96. Seelenmeyer C, Wegehingel S, Lechner J, Nickel W, The cancer antigen CA125 represents a novel counter receptor for galectin-1, J Cell Sci 116, 1305-18 (2003).

    Google Scholar 

  97. Harvey S, Zhang Y, Landry F, Miller C, Smith JS, Insights into a plasma membrane signature, Physiol Genomics 5, 129- 36 (2001).

    Google Scholar 

  98. Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP, Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on β-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells, Cancer Res 60, 2584-8 (2000).

    Google Scholar 

  99. Chang JW, Jeon HB, Lee JH, Yoo JS, Chun JS, Kim JH, Too YJ, Augmented expression of peroxiredoxin I in lung cancer, Biochem Biophys Res Commun 289, 507-12 (2001).

    Google Scholar 

  100. Choufani G, Nagy N, Saussez S, Marchant H, Bisschop P, Burchert M, Danguy A, Louryan S, Salmon I, Gabius HJ, Kiss R, Hassid S, The levels of expression of galectin-1, galectin-3, and the Thomsen-Friedenreich antigen and their binding sites decrease as clinical aggressiveness increases in head and neck cancers, Cancer 86, 2353-63 (1999).

    Google Scholar 

  101. Gillenwater A, Xu XC, Estrov Y, Sacks PG, Lotan D, Lotan R, Modulation of galectin-1 content in human head and neck squamous carcinoma cells by sodium butyrate, Intl J Cancer 75, 217-24 (1998).

    Google Scholar 

  102. Mackay A, Jones C, Dexter T, Silva RL, Bulmer K, Jones A, Simpson P, Harris RA, Jat PS, Neville AM, Reis LF, Lakhani SR, O'Hare MJ, cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells, Oncogene 22, 2680-8 (2003).

    Google Scholar 

  103. Lahm H, Andre S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ, Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures, J Cancer Res Clin Oncol 127, 375-86 (2001).

    Google Scholar 

  104. Ohannesian DW, Lotan D, Lotan R, Concomitant increases in galectin-1 and its glycoconjugate ligands (carcinoembryonic antigen-lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate, Cancer Res 54, 5992-6000 (1994).

    Google Scholar 

  105. Li X, Ohannesian DW, Yoshida M, Beppu T, Lotan R, Induction of galectin-1 expression in human colon carcinoma cells by histone deacetylase inhibitors, Molec Cell Diff 4, 149-65 (1996).

    Google Scholar 

  106. Ellerhorst J, Nguyen T, Cooper DNW, Estrov Y, Lotan D, Lotan R, Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1, Intl J Oncol 14, 225-32 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K., Weinberg, C. Galectin-1: A bifunctional regulator of cellular proliferation. Glycoconj J 19, 467–477 (2002). https://doi.org/10.1023/B:GLYC.0000014076.43288.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014076.43288.89

Navigation