Skip to main content
Log in

GOLDEN OLDIE: Editor's Note: Empty Space-Times Admitting a Three Parameter Group of Motions, by A. H. Taub

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Jantzen, R. T. (1987). In Proceedings of the 26th Liège International Astrophysical Colloquium, Liège, Belgium, 1986, J. Demaret (Ed.), Liège University Press, Liège, pp. 237–255; e-print gr-qc/0309025.

    Google Scholar 

  2. Nebecker, F., Gillespie, C. C., Tucker, A. W., and Aspray, W. The Princeton Mathematics Community in the 1930s: An Oral History Project. Princeton University. Available at http://www.princeton.edu/mudd/math/.

  3. Gödel, K. (1949). Rev. Mod. Phys. 21, 447. Reprinted in Gen. Relat. Grav. 32, 1409 (2000).

    Google Scholar 

  4. Gödel, K. (1952). In Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Vol. 1, L. M. Graves. E. Hille, P. A. Smith, and O. Zariski, (Eds.) Amer. Math. Soc., Providence, R. I., pp. 175–181. Reprinted in Gen. Relat. Grav. 32, 1419 (2000).

  5. Bianchi, L., Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Memorie di Matematica e di Fisica della Società Italiana delle Scienze, serie terza, Tomo XI, 267–352 (1898). Reprinted in Opere, Vol. IX, A. Maxia (Ed.), E. Cremonese, Rome, 1952, and in Gen. Relat. Grav. 33, 2171–2253 (2001).

    Google Scholar 

  6. Mashhoon, B. SIAM News 34(7), 2–3 (2001).

    Google Scholar 

  7. Ellis, G. F. R. and MacCallum, M. A. H. A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108 (1969).

    Google Scholar 

  8. Schucking, E. L. The spatially homogeneous cosmological models. (Notes by W. Kundt, with commentary by A. Krasiński, C. G. Behr, E. L. Schucking, F. B. Estabrook, H. D. Wahlquist, G. F. R Ellis, R. Jantzen and W. Kundt.) Gen. Relat. Grav. 35, 475 (2003).

    Google Scholar 

  9. Kasner, E. Geometrical theorems on Einstein's cosmological equations. Am. J. Math. 43, 217 (1921).

    Google Scholar 

  10. Newman, E. T., Tamburino, L. A., and Unti, T. Empty-space generalization of the Schwarzschild metric. J. Math. Phys. 4, 915 (1963).

    Google Scholar 

  11. Demiański, M. and Newman, E. T. A combined Kerr-NUT solution of the Einstein field equations. Bull. Acad. Polon. Sci. Math. Astron. Phys. 14, 653 (1966).

    Google Scholar 

  12. Cahen, M. and Defrise, L. Lorentzian 4-dimensional manifolds with 'local isotropy'. Commun. Math. Phys., 11, 56 (1968).

    Google Scholar 

  13. Debever, R., Kamran, N., and McLenaghan, R. G. A single expression for the general so-lution of Einstein's vacuum and electrovac field equations with cosmological constant for Petrov type D admitting a non-singular aligned Maxwell field. Phys. Lett. A 93, 399–402 (1983).

    Google Scholar 

  14. Quevedo, H. and Mashhoon, B. Generalization of Kerr spacetime. Phys. Rev. D 43(12), 3902–3906 (1991).

    Google Scholar 

  15. Misner, C.W. In Relativity Theory and Astrophysics, Vol. 1: Relativity and Cosmology, Lectures in Applied Mathematics, Vol. 8, American Mathematical Society, Providence, RI, pp. 160–169 (1967).

    Google Scholar 

  16. Misner, C. W. The flatter regions of Newman, Unti and Tamburino's generalized Schwarzschild space. J. Math. Phys. 4, 924–937 (1963).

    Google Scholar 

  17. Misner, C. W. and Taub, A. H. A singularity-free empty universe (in Russian). Zh. Eks. Teor. Fiz 55, 233 (1968). English original in Sov. Phys. JETP, 28, 122 (1969).

    Google Scholar 

  18. Hawking, S. W. and Ellis, G. F. R. The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge, 1973.

    Google Scholar 

  19. Tipler, F. J., Clarke, C. J. S., and Ellis, G. F. R. (1980). In General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2, Plenum, New York, p. 97.

    Google Scholar 

  20. Gibbons, G. W. and Hawking, S. W. (Eds.) Euclidean Quantum Gravity. World Scientific, Singapore, 1993.

    Google Scholar 

  21. Sorkin, R. D. Kaluza-Klein monopole. Phys. Rev. Lett. 51, 87 (1983).

    Google Scholar 

  22. Gross, D. G. and Perry, M. J. Magnetic monopoles in Kaluza-Klein theories. Nucl. Phys. B 226, 29 (1983).

    Google Scholar 

  23. Gibbons, G. W. and Manton, N. S. Classical and quantum dynamics of BPS monopoles. Nucl. Phys. B 274, 183 (1986).

    Google Scholar 

  24. Ivanov, E. and Valent, G. Harmonic space construction of the quaternionic Taub-NUT metric. Class. Quant. Grav. 16, 1039 and 2143 (1999).

    Google Scholar 

  25. Vaman, D. and Visinescu, M. Supersymmetries and constants of motion in Taub-NUT spinning space. Fortschr. Phys. 47, 493 (1999).

    Google Scholar 

  26. Cvetic, M., Lu, H., and Pope, C. N. Decoupling limit, lens spaces and Taub-NUT: D =4 black-hole microscopics from D =5 black holes. Nucl. Phys. B. 549, 194 (1999).

    Google Scholar 

  27. Alonso-Alberca, N., Meessens, P., and Ortin, T. Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS spacetimes. Class. Quant. Grav. 17, 2983 (2000).

    Google Scholar 

  28. Gomis, J. D-Branes, holonomy and M-theory. Nucl. Phys. B, 606, 3 (2001).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacCallum, M. GOLDEN OLDIE: Editor's Note: Empty Space-Times Admitting a Three Parameter Group of Motions, by A. H. Taub. General Relativity and Gravitation 36, 2689–2697 (2004). https://doi.org/10.1023/B:GERG.0000048983.98096.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000048983.98096.30

Navigation