Abstract
We present exact expressions for the Sagnac effect of Gödel's Universe. For this purpose we first derive a formula for the Sagnac time delay along a circular path in the presence of an arbitrary stationary metric in cylindrical coordinates. We then apply this result to Gödel's metric for two different experimental situations: First, the light source and the detector are at rest relative to the matter generating the gravitational field. In this case we find an expression that is formally equivalent to the familiar nonrelativistic Sagnac time delay. Second, the light source and the detector are rotating relative to the matter. Here we show that for a special rotation rate of the detector the Sagnac time delay vanishes. Finally we propose a formulation of the Sagnac time delay in terms of invariant physical quantities. We show that this result is very close to the analogous formula of the Sagnac time delay of a rotating coordinate system in Minkowski spacetime.
This is a preview of subscription content, access via your institution.
REFERENCES
Amir, A. (2003). Pendulum: Leon Foucault and the Triumph of Science, Pocket Books, New York.
Sagnac, G. (1913). C. R. Acad. Sci., Paris 157, 708.
Sagnac, G. (1913). C. R. Acad. Sci., Paris 157, 1410.
Post, E. J. (1967). Rev. Mod. Phys. 39, 475.
Tartaglia, A. (1998). Phys.Rev. D58, 064009.
Nandi, K. K., Alsing, P. M., Evans, J. C., and Nayak, T. B. (2001). Phys. Rev. D 63, 084027.
Michelson, A. A., and Gale, H. G. (1925). Astrophys. J. 61, 140.
Weyl, H. (1924). Naturwissenschaften 12, 197.
Isenberg, J., and Wheeler, J. A. (1979). Relativity, Quanta and Cosmology, Johnson Reprint Corporation, New York.
Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, Princeton, NJ.
Ohanian, H. C. (1976). Gravitation and Spacetime, Norton, New York.
Schleich, W. P., and Scully, M. O. (1984). New Trends in Atomic Physics (Les Houches 1982, Session XXXVI), North-Holland, Amsterdam.
Bonnor, W. B., and Steadman, B. R. (1999). Class. Quant. Grav. 16, 1853.
L¨ ammerzahl, C., Everitt, C. W. F., and Hehl, F. W. (2000). Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, Springer, Heidelberg.
Ciufolini, I., Pavlis, E., Chieppa, F., Fernandes-Vieira, E., and P´ erez-Mercader, J. (1998). Science 279, 2100.
Thirring, H. (1918). Phys. Z. 19, 33.
Thirring, H. (1921). Phys. Z. 22, 29.
Lense, J., and Thirring, H. (1918). Phys. Z. 19, 156.
Mashoon, B., Hehl, F. W., and Theiss, D. S. (1984). Gen. Rel. Grav. 16, 711.
HYPER 2000 Hyper-precision cold atom interferometry in space, Assessment Study Report, European Space Agency
Gustavson, T. L., Bouyer, P., and Kasevich, M. A. (1997). Phys. Rev. Lett. 78, 2046.
Gustavson, T. L., Landragin, A., and Kasevich, M. A. (2000). Class. Quant. Grav. 17, 2385
Bordé, C. J. (2001). C. R. Acad. Sci. Paris, t.2, S´ erie IV, 509.
Bordé, C. J., Karasiewicz, A., and Tourrenc, Ph. (1994). Int. J. Mod. Phys. D 3, 157
G¨ odel, K. (1949). Rev. Mod. Phys. 21, 447
G¨ odel, K., (1949). In Albert Einstein: Philosopher-Scientist. Vol. VII: The Library of Living Philosophers, P. A. Schilpp (Ed.), Evanston, Illinois, p. 557.
G¨ odel, K. (1950). Proc. Int. Cong. Math., 1, 175-181.
Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, UK.
Delgado, A., Schleich, W. P., and S¨ ussmann, G. (2002). NJP 4, 37.1.
see e.g.: www.esf.org/publication/120/COSLAB.pdf
Leonhardt, U., Piwnicki, P. (1999). Phys. Rev. A 60, 4301
Volovik, G. E. (2003). The Universe in a Helium Droplet, Oxford University Press, Oxford, UK.
Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2001). Phys. Rev. A 63, 023611.
Cohen, J. M., Vishveshwara, C. V., and Dhurandhar, S. V. (1980). J. Phys. A 13, 933.
Kajari, E. (2003), Untersuchungen zum G¨ odeluniversum, Diploma Thesis, University of Ulm.
Chow, W. W., Gea-Banacloche, J., Pedrotti, L. M., Sanders, V. E., Schleich, W. P., and Scully, M. O. (1985). Rev. Mod. Phys. 57,61
Scully, M. O., Zubairy, M. S., Haugan, M. P. (1981). Phys. Rev. A 24, 2009.
Hannay, J. H. (1985). J. Phys. A 18, 221.
Cohen, J. M., Moses, H. E., Rosenblum, A. (1983). Phys. Rev. Lett. 51, 1501.
Baÿ za´ nski, S. L. (1998). AIP Conf. Proc. 453, 421, 428.
Landau, L. D., Lifschitz, E. M. (1992). —Lehrbuch der theoretischen Physik, Bd. 2: Klassische Feldtheorie, 12, Auflage, Akademie Verlag, Berlin, p. 303.
Ehlers J. (1961). —Beitr¨ age zur relativistischen Mechanik kontinuierlicher Medien, Abh. Mainzer Akad. Wiss. Math.-Nat. Klasse 1961 Nr. 11.
See e.g. Novello, M., Svaiter, N. F., and Guimaräes, M. E. X. (1993). Gen. Rel. Grav. 25, 137.
Kerr, R. P. (1963). Phys. Rev. Lett. 11, 237.
Carter, B. (1968). Phys. Rev. 174, 1559.
Stockum, W. J. (1937). Proc. R. Soc. Edinburgh 57, 135.
Mallett, R. L. (2003). Found. Phys. 33, 1307.
Kundt, W. (1956). Z. Phys. 145, 611.
Chandrasekhar, S., and Wright, J. P. (1961). Proc. Nat. Acad. Sci. 47, 341.
Novello, M., Damiäo Soares, I., Tiomno, J. (1983). Phys. Rev. D 27, 779.
Ciufolini, I., Kopeikin, S., Mashoon, B., Ricci, F. (2002). arXiv: gr-qc/0210015
Marzke, R. F., and Wheeler, J. A. (1964). In Gravitation and Relativity, H.-Y. Chiu and W. F. Hoffman (Eds.), Benjamin, New York.
Bodenner, J., and Will, C. M. (2003). Am.J.Phys. 71, 770.
Baÿ za´ nski, S. L. (1999). On Einstein's Path, Springer, New York.
Bunn, E. F., Ferreira, P. G., and Silk, J. (1996). Phys. Rev. Lett. 77, 2883.
Williams, J. E., and Holland, M. (1999). Nature 401, 568
Fetter, A. (2002). JLTP 129, 263.
Nandi, G., Walser, R., and Schleich, W. P. (2004). Phys. Rev. A 69, 063606.
Anglin, J. R., and Ketterle, W. (2002). Nature 416, 211.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kajari, E., Walser, R., Schleich, W.P. et al. Sagnac Effect of Gödel's Universe. General Relativity and Gravitation 36, 2289–2316 (2004). https://doi.org/10.1023/B:GERG.0000046184.03333.9f
Issue Date:
DOI: https://doi.org/10.1023/B:GERG.0000046184.03333.9f