Skip to main content

Sagnac Effect of Gödel's Universe

Abstract

We present exact expressions for the Sagnac effect of Gödel's Universe. For this purpose we first derive a formula for the Sagnac time delay along a circular path in the presence of an arbitrary stationary metric in cylindrical coordinates. We then apply this result to Gödel's metric for two different experimental situations: First, the light source and the detector are at rest relative to the matter generating the gravitational field. In this case we find an expression that is formally equivalent to the familiar nonrelativistic Sagnac time delay. Second, the light source and the detector are rotating relative to the matter. Here we show that for a special rotation rate of the detector the Sagnac time delay vanishes. Finally we propose a formulation of the Sagnac time delay in terms of invariant physical quantities. We show that this result is very close to the analogous formula of the Sagnac time delay of a rotating coordinate system in Minkowski spacetime.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Amir, A. (2003). Pendulum: Leon Foucault and the Triumph of Science, Pocket Books, New York.

    Google Scholar 

  2. Sagnac, G. (1913). C. R. Acad. Sci., Paris 157, 708.

    Google Scholar 

  3. Sagnac, G. (1913). C. R. Acad. Sci., Paris 157, 1410.

    Google Scholar 

  4. Post, E. J. (1967). Rev. Mod. Phys. 39, 475.

    Google Scholar 

  5. Tartaglia, A. (1998). Phys.Rev. D58, 064009.

    Google Scholar 

  6. Nandi, K. K., Alsing, P. M., Evans, J. C., and Nayak, T. B. (2001). Phys. Rev. D 63, 084027.

    Google Scholar 

  7. Michelson, A. A., and Gale, H. G. (1925). Astrophys. J. 61, 140.

    Google Scholar 

  8. Weyl, H. (1924). Naturwissenschaften 12, 197.

    Google Scholar 

  9. Isenberg, J., and Wheeler, J. A. (1979). Relativity, Quanta and Cosmology, Johnson Reprint Corporation, New York.

    Google Scholar 

  10. Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, Princeton, NJ.

    Google Scholar 

  11. Ohanian, H. C. (1976). Gravitation and Spacetime, Norton, New York.

    Google Scholar 

  12. Schleich, W. P., and Scully, M. O. (1984). New Trends in Atomic Physics (Les Houches 1982, Session XXXVI), North-Holland, Amsterdam.

  13. Bonnor, W. B., and Steadman, B. R. (1999). Class. Quant. Grav. 16, 1853.

    Google Scholar 

  14. L¨ ammerzahl, C., Everitt, C. W. F., and Hehl, F. W. (2000). Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, Springer, Heidelberg.

    Google Scholar 

  15. Ciufolini, I., Pavlis, E., Chieppa, F., Fernandes-Vieira, E., and P´ erez-Mercader, J. (1998). Science 279, 2100.

    Google Scholar 

  16. Thirring, H. (1918). Phys. Z. 19, 33.

    Google Scholar 

  17. Thirring, H. (1921). Phys. Z. 22, 29.

    Google Scholar 

  18. Lense, J., and Thirring, H. (1918). Phys. Z. 19, 156.

    Google Scholar 

  19. Mashoon, B., Hehl, F. W., and Theiss, D. S. (1984). Gen. Rel. Grav. 16, 711.

    Google Scholar 

  20. HYPER 2000 Hyper-precision cold atom interferometry in space, Assessment Study Report, European Space Agency

  21. Gustavson, T. L., Bouyer, P., and Kasevich, M. A. (1997). Phys. Rev. Lett. 78, 2046.

    Google Scholar 

  22. Gustavson, T. L., Landragin, A., and Kasevich, M. A. (2000). Class. Quant. Grav. 17, 2385

    Google Scholar 

  23. Bordé, C. J. (2001). C. R. Acad. Sci. Paris, t.2, S´ erie IV, 509.

    Google Scholar 

  24. Bordé, C. J., Karasiewicz, A., and Tourrenc, Ph. (1994). Int. J. Mod. Phys. D 3, 157

    Google Scholar 

  25. G¨ odel, K. (1949). Rev. Mod. Phys. 21, 447

    Google Scholar 

  26. G¨ odel, K., (1949). In Albert Einstein: Philosopher-Scientist. Vol. VII: The Library of Living Philosophers, P. A. Schilpp (Ed.), Evanston, Illinois, p. 557.

    Google Scholar 

  27. G¨ odel, K. (1950). Proc. Int. Cong. Math., 1, 175-181.

    Google Scholar 

  28. Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  29. Delgado, A., Schleich, W. P., and S¨ ussmann, G. (2002). NJP 4, 37.1.

    Google Scholar 

  30. see e.g.: www.esf.org/publication/120/COSLAB.pdf

  31. Leonhardt, U., Piwnicki, P. (1999). Phys. Rev. A 60, 4301

    Google Scholar 

  32. Volovik, G. E. (2003). The Universe in a Helium Droplet, Oxford University Press, Oxford, UK.

    Google Scholar 

  33. Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2001). Phys. Rev. A 63, 023611.

    Google Scholar 

  34. Cohen, J. M., Vishveshwara, C. V., and Dhurandhar, S. V. (1980). J. Phys. A 13, 933.

    Google Scholar 

  35. Kajari, E. (2003), Untersuchungen zum G¨ odeluniversum, Diploma Thesis, University of Ulm.

  36. Chow, W. W., Gea-Banacloche, J., Pedrotti, L. M., Sanders, V. E., Schleich, W. P., and Scully, M. O. (1985). Rev. Mod. Phys. 57,61

    Google Scholar 

  37. Scully, M. O., Zubairy, M. S., Haugan, M. P. (1981). Phys. Rev. A 24, 2009.

    Google Scholar 

  38. Hannay, J. H. (1985). J. Phys. A 18, 221.

    Google Scholar 

  39. Cohen, J. M., Moses, H. E., Rosenblum, A. (1983). Phys. Rev. Lett. 51, 1501.

    Google Scholar 

  40. Baÿ za´ nski, S. L. (1998). AIP Conf. Proc. 453, 421, 428.

    Google Scholar 

  41. Landau, L. D., Lifschitz, E. M. (1992). —Lehrbuch der theoretischen Physik, Bd. 2: Klassische Feldtheorie, 12, Auflage, Akademie Verlag, Berlin, p. 303.

    Google Scholar 

  42. Ehlers J. (1961). —Beitr¨ age zur relativistischen Mechanik kontinuierlicher Medien, Abh. Mainzer Akad. Wiss. Math.-Nat. Klasse 1961 Nr. 11.

  43. See e.g. Novello, M., Svaiter, N. F., and Guimaräes, M. E. X. (1993). Gen. Rel. Grav. 25, 137.

    Google Scholar 

  44. Kerr, R. P. (1963). Phys. Rev. Lett. 11, 237.

    Google Scholar 

  45. Carter, B. (1968). Phys. Rev. 174, 1559.

    Google Scholar 

  46. Stockum, W. J. (1937). Proc. R. Soc. Edinburgh 57, 135.

    Google Scholar 

  47. Mallett, R. L. (2003). Found. Phys. 33, 1307.

    Google Scholar 

  48. Kundt, W. (1956). Z. Phys. 145, 611.

    Google Scholar 

  49. Chandrasekhar, S., and Wright, J. P. (1961). Proc. Nat. Acad. Sci. 47, 341.

    Google Scholar 

  50. Novello, M., Damiäo Soares, I., Tiomno, J. (1983). Phys. Rev. D 27, 779.

    Google Scholar 

  51. Ciufolini, I., Kopeikin, S., Mashoon, B., Ricci, F. (2002). arXiv: gr-qc/0210015

  52. Marzke, R. F., and Wheeler, J. A. (1964). In Gravitation and Relativity, H.-Y. Chiu and W. F. Hoffman (Eds.), Benjamin, New York.

    Google Scholar 

  53. Bodenner, J., and Will, C. M. (2003). Am.J.Phys. 71, 770.

    Google Scholar 

  54. Baÿ za´ nski, S. L. (1999). On Einstein's Path, Springer, New York.

    Google Scholar 

  55. Bunn, E. F., Ferreira, P. G., and Silk, J. (1996). Phys. Rev. Lett. 77, 2883.

    Google Scholar 

  56. Williams, J. E., and Holland, M. (1999). Nature 401, 568

    Google Scholar 

  57. Fetter, A. (2002). JLTP 129, 263.

    Google Scholar 

  58. Nandi, G., Walser, R., and Schleich, W. P. (2004). Phys. Rev. A 69, 063606.

    Google Scholar 

  59. Anglin, J. R., and Ketterle, W. (2002). Nature 416, 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kajari, E., Walser, R., Schleich, W.P. et al. Sagnac Effect of Gödel's Universe. General Relativity and Gravitation 36, 2289–2316 (2004). https://doi.org/10.1023/B:GERG.0000046184.03333.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000046184.03333.9f