Skip to main content
Log in

Scalar Perturbations in Inflationary Models Based on the Non-Linear Sigma Model

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The inflationary models based on the non-linear sigma model with the self-coupling potential are considered. The slow-roll solutions for long-wavelength inhomogeneities in general two-component chiral models and diagonal three-component chiral model of a special case are obtained. Scalar perturbations are calculated for two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Linde, A. D. (1990). Particle Physics and Inflationary Cosmology, Harwood, Chur, Switzerland.

    Google Scholar 

  2. Bridle, S. L., Lewis, A. M., Weller, J., and Efstathiou, G. (2003). (astro-ph/0302306).

  3. Chervon, S. V. (1995). In Proceedings of the 11th PotsdamWorkshop on Relativistic Astrophysics, J. P. Mücket, S. Gottlöber, and V. M. M¨uller (Eds.), World Scientific, Singapore, p. 343.

    Google Scholar 

  4. Maeda, K. (1989). Phys. Rev. D 39, 3159.

    Google Scholar 

  5. Starobinsky, A. A., and Yokoyama, J. (1995). In Proceedings Fourth Workshop on General Relativity and Gravitation, K. Nakao, T. Nakamura, and K. Maeda (Eds.), Kyoto University, 1995, p. 381 (gr-qc/9502002).

  6. García-Bellido, J., and Wands, D. (1995). Phys. Rev. D 52, 6739 (gr-qc/9506050).

    Google Scholar 

  7. García-Bellido, J., and Wands, D. (1996). Phys. Rev. D 53, 5437 (astro-ph/9511029).

    Google Scholar 

  8. Starobinsky, A. A., Tsujikawa, S., and Yokoyama, J. (2001). Nucl. Phys. B 610, 383 (astroph/0107555).

    Google Scholar 

  9. Mukhanov, V. F., and Steinhardt, P. J. (1988). Phys. Lett. B 422, 52–60 (astro-ph/9710038).

    Google Scholar 

  10. Mukhanov, V. F., Feldman, H. A., and Brandenberger, R. H. (1992). Phys. Rep. 215, 393.

    Google Scholar 

  11. Chervon, S. V. (2002). Grav. Cosmol. 8(Suppl. I), 32–40.

    Google Scholar 

  12. Sasaki, M., and Stewart, E. D. (1996). Prog. Theor. Phys. 95, 71 (astro-ph/9507001).

    Google Scholar 

  13. Liddle, A. R., and Lyth, D. (1993). Phys. Rep. 231, 1 (astro-ph/9303019).

    Google Scholar 

  14. Gordon, C., Wands, D., Bassett, B. A., and Maartens, R. (2001). Phys. Rev. D 63, 023506 (astro-ph/0009131).

    Google Scholar 

  15. Honerkamp, J. (1972). Nucl. Phys. B 36, 130.

    Google Scholar 

  16. Chiou-Lahanas, C., Kapella-Economou, A., Lahanas, A. B., and Maintas, X. N. (1990). Phys. Rev. D 42, 469.

    Google Scholar 

  17. Polarski, D., and Starobinsky, A. A. (1996). Class. Quant. Grav. 13, 377 (gr-qc/9504030).

    Google Scholar 

  18. Futamase, T., and Maeda, K. (1989). Phys. Rev. D 39, 399.

    Google Scholar 

  19. Kaiser, D. I. (1995). Phys. Rev. D 52, 4295 (astro-ph/9408044).

    Google Scholar 

  20. Tsujikawa, S., and Yajima, H. (2000). Phys. Rev. D 62, 123512 (hep-ph/0007351).

    Google Scholar 

  21. Tsujikawa, S., Maeda, K., and Torii, T. (2000). Phys. Rev. D 61, 103501 (hep-ph/9910214).

    Google Scholar 

  22. Will, C. M. (2001). Living. Rev. Rel. 4, 1 (gr-qc/0103036).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshelev, N.A. Scalar Perturbations in Inflationary Models Based on the Non-Linear Sigma Model. General Relativity and Gravitation 36, 1625–1640 (2004). https://doi.org/10.1023/B:GERG.0000032155.73372.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000032155.73372.0e

Navigation