Skip to main content
Log in

Effective Connections and Fields Associated with Shear-Free Null Congruences

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A special subclass of shear-free null congruences (SFC) is studied, with tangent vector field being a repeated principal null direction of the Weyl tensor. We demonstrate that this field is parallel with respect to an effective affine connection which contains the Weyl nonmetricity and the skew symmetric torsion. On the other hand, a Maxwell-like field can be directly associated with any special SFC, and the electric charge for bounded singularities of this field turns to be “self-quantized.” Two invariant differential operators are introduced which can be thought of as spinor analogues of the Beltrami operators and both nullify the principal spinor of any special SFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Penrose, R., and Rindler W. (1986/1988). Spinors and Space-Time, Vols. 1 and 2, Oxford University Press, Oxford.

    Google Scholar 

  2. Kinnersley, W. (1969). Phys. Rev. 186, 1335.

    Google Scholar 

  3. Kassandrov, V. V. (2002). Grav. Cosmol, 8 (Suppl. 2), 57.

    Google Scholar 

  4. Kassandrov, V. V. (1998). Acta Appl. Math. 50, 197; Kassandrov, V. V. (1992). The Algebraic Structure of Space-Time and the Algebrodynamics, People's Friendship University Press, Moscow. (in Russian)

    Google Scholar 

  5. Kassandrov, V. V., and Rizcallah J. A. (2000). (e-print gr-qc/0012109).

  6. Kassandrov V. V. (1995). Grav. Cosmol. 1, 216.

    Google Scholar 

  7. Kassandrov, V. V., and Trishin V. N. (1999) Grav. Cosmol 5, 272.

    Google Scholar 

  8. Ward, R. S., and Wells, R. O. (1990). Twistor Geometry and Field Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  9. Robinson, I. (1961). J. Math. Phys. 2, 290.

    Google Scholar 

  10. Benn, I. M., Charlton, P., and Kress, J. (1997). J. Math. Phys. 38, 4504.

    Google Scholar 

  11. Cohen, J. M., and Kegeles, L. S. (1974). Phys. Rev. D 10, 1070; Cohen, J. M., and Kegeles, L. S. (1979). Phys. Rev. D 19, 1641.

    Google Scholar 

  12. Kerr, R. P., and Wilson, W. B. (1979). Gen. Rel. Grav. 10, 273.

    Google Scholar 

  13. Kassandrov, V. V., and Rizcalla J. A. (2002). In Proc.XXVWorkshop on the Fundamental Problems of High Energy Physics and Field Theory, Vol. 199, High Energy Physics Institute Press, Protvino.

    Google Scholar 

  14. Kassandrov, V. V. (2003). (e-print physics/0308045).

  15. Goldberg, J. N., and Sachs, R. K. (1962). Acta Phys. Polon. 22, 13.

    Google Scholar 

  16. Sommers, P. (1976). Proc. R. Soc. Lond. Ser. A 349, 309.

    Google Scholar 

  17. Nurowski, P., and Trautman, A. (2002). (e-print math.DG/0201266).

  18. Krechet, V. G. (1995). Grav. Cosmol 1, 199.

    Google Scholar 

  19. Tod, K. P. (1996). Class. Quant. Grav. 13, 2609.

    Google Scholar 

  20. Dirac, P. A. M. (1931). Proc. R. Soc. Lond. A 133, 60; Dirac, P. A. M. (1948). Phys. Rev. 74, 817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassandrov, V.V., Trishin, V.N. Effective Connections and Fields Associated with Shear-Free Null Congruences. General Relativity and Gravitation 36, 1603–1612 (2004). https://doi.org/10.1023/B:GERG.0000032152.79799.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000032152.79799.8a

Navigation