Skip to main content
Log in

Dirac Fields in 3D de Sitter Spacetime

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show that the Dirac equation is separable in the circularly symmetric metric in three dimensions and when the background spacetime is de Sitter we find exact solutions to the radial equations. Using these results we show that the de Sitter horizon has a cross section equal to zero for the massless Dirac field, as in the case of the scalar field. Also, using the improved brick wall model we calculate the fermionic entropy associated with the de Sitter horizon and we compare it with some results previously published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birrell, N. D. and Davies, P. C. W. (1982). Quantum Fields in Curved Space, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  2. Guth, A. H. (1981). Phys. Rev. D 23, 347; Linde, A. D. (1982). Phys. Lett. B 108, 389; Albrecht, A. and Steinhardt, P. J. (1982). Phys. Rev. Lett. 48, 1220; Linde, A. (1990). Particle Physics and Inflationary Cosmology, Harwood Academic Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  3. Strominger, A. (2001). JHEP 10, 034(hep-th/0106113);Klemm, D. (2002). Nucl. Phys. B 625, 295(hep-th/0106247).

    Google Scholar 

  4. Bousso, R., Maloney, A., and Strominger, A. (2002). Phys. Rev. D 65, 104039(hep-th/0112218).

    Google Scholar 

  5. Riess, A. G., et al. [Supernova Team Collaboration]. (1998). Astron. J. 116, 1009(astro-ph/9805201); Perlmutter, S., et al. [Supernova Cosmology Project Collaboration]. (1999). Astrophys. J. 517, 565(astro-ph/9812133).

    Google Scholar 

  6. Myung, Y. S. and Lee, H. W. (2003). Class. Quant. Grav. 20, 3533(hep-th/0302148);Myung, Y. S. and Lee, H. W. (2003). (hep-th/0304231).

    Google Scholar 

  7. Park, M. I. (1998). Phys. Lett. B 440, 275 (hep-th/9806119); Bañados, M., Brotz, T., and Ortiz, M. (1999). Phys. Rev. D 59, 046002 (hep-th/9807216); Lin, F. L. and Wu, Y. S. (1999). Phys. Lett. B 453, 222 (hep-th/9901147); Hawking, S. W., Maldacena, J., and Strominger, A. (2001). JHEP 05, 01 (hep-th/0002145).

    Google Scholar 

  8. Maldacena, J. and Strominger, A. (1998). JHEP 02, 014(gr-qc/9801096).

    Google Scholar 

  9. Kim, W. T. (1999). Phys. Rev. D 59, 047503(hep-th/9810169).

    Google Scholar 

  10. 't Hooft, G. (1985). Nucl. Phys. B 256, 727.

    Google Scholar 

  11. Jing, J. (2000). Int. J. Theor. Phys. 39, 1687;Cognola, G. and Lecca, P. (1997). Phys. Rev. D 57, 1108(hep-th/9706065); Zhong-heng, L. (2000). Phys. Rev. D 62, 024001; Shen, Y. G. (2000). Phys. Lett. A 266, 234; Shen, Y. G. (2000). Gen. Rel. Grav. 32, 1647; Shen, Y. G. and Chen, D. M. (2000). Gen. Rel. Grav. 32, 2269; Gao, C. J. and Shen, Y. G. (2002). Phys. Rev. D 65, 084043; Wei, Y. H., Wang, Y., and Zhao, Z. (2002). Phys. Rev. D 65, 124023.

    Google Scholar 

  12. Lee, M. H. and Kim, J. K. (1996). Phys. Lett. A 212, 323; Lee, M. H. and Kim, J. K. (1996). Phys. Rev. D 54, 3904; Ho, J., Kim, W. T., Park, Y. J., and Shin, H. (1997). Class. Quant. Grav. 14, 2617; Jing, J. and Yan, M. L. (2000). Phys. Rev. D 61, 044016; Jing, J. and Yan, M. L. (1999). Phys. Rev. D 60, 084015; Wenbiao, L. and Zheng, Z. (2000). Phys. Rev. D 61, 063003; Jing, J. and Yan, M. L. (2001). Phys. Rev. D 63, 084028; Jing, J. and Yan, M. L. (2001). Phys. Rev. D 64, 064015; López-Ortega, A. (2003). Gen. Rel. Grav. 35, 59; Wu, S. Q. and Yan, M. L. (2003). (gr-qc/0303076).

    Google Scholar 

  13. Liu, W. and Zhao, Z. (2001). Int. J. Mod. Phys. A 16, 3793; Ren, Z., Junfang, Z., and Lichun, Z. (2001). Mod. Phys. Lett. A 11, 719; Xiang, L. and Zheng, Z. (2001). Int. J. Theor. Phys. 40, 903.

    Google Scholar 

  14. Newman, E. and Penrose, R. (1962). J. Math. Phys. 3, 556.

    Google Scholar 

  15. Spradlin, M., Strominger, A., and Volovich, A. (2001). (hep-th/0110007).

  16. Kim, Y., Oh, C. Y., and Park, N. (2003). J. Korean Phys. Soc. 42, 573(hep-th/0212326).

    Google Scholar 

  17. Gibbons, G. W. and Hawking, S. W. (1977). Phys. Rev. D 15, 2738.

    Google Scholar 

  18. Wald, R. M. (2001). Living Rev. Rel. 4, 6(http://www.livingreviews.org/lrr-2001-6).

    Google Scholar 

  19. Nakahara M. (1990). Geometry, Topology and Physics, IOP Publishing, Bristol, United Kingdom.

    Google Scholar 

  20. Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes, Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  21. Suzuki, H. and Takasugi, E. (1996). Mod. Phys. Lett. A 11, 431.

    Google Scholar 

  22. Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions, Dover Publications, New York; Wang, Z. X. and Guo, D. R. (1989). Special Functions, World Scientific, Singapore.

    Google Scholar 

  23. Mottola, E. (1985). Phys. Rev. D 31, 754; Mottola, E. (1986). Phys. Rev. D 33, 1616.

    Google Scholar 

  24. Danielsson, U. H., Domert, D., and Olsson, M. (2002). (hep-th/0210198).

  25. Lohiya, D. and Panchapakesan, N. (1978). J. Phys. A: Math. Gen. 11, 1963; Lohiya, D. and Panchapakesan, N. (1979). J. Phys. A: Math. Gen. 12, 533; Khanal, U. and Panchapakesan, N. (1982). Ann. Phys. (N.Y.) 138, 260.

    Google Scholar 

  26. Otchik, V. S. (1985). Class. Quant. Grav. 2, 539.

    Google Scholar 

  27. Xiang, L. and Zheng, Z. (2000). Phys. Rev. D 62, 104001; He, F., Zheng, Z., and Kim, S. W. (2001). Phys. Rev. D 64, 044025.

    Google Scholar 

  28. Ren, Z. and Lichun, Z. (2002). Int. J. Mod. Phys. D 11, 1381; Gao, C. J. and Shen, Y. G. (2002). Class. Quant. Grav. 19, 4933; Ge, X. H. and Shen, Y. G. (2003). Class. Quant. Grav. 20, 3593.

    Google Scholar 

  29. Shen, Y. G. and Gao, C. J. (2002). Gen. Rel. Grav. 34, 1035.

    Google Scholar 

  30. Thorne, K. S., Price, R. H., and Macdonald, D. A. (1986). Black Holes: The Membrane Paradigm, Yale University Press, New Haven, Connecticut.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Ortega, A. Dirac Fields in 3D de Sitter Spacetime. General Relativity and Gravitation 36, 1299–1319 (2004). https://doi.org/10.1023/B:GERG.0000022389.05399.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000022389.05399.6d

Navigation