Advertisement

General Relativity and Gravitation

, Volume 36, Issue 3, pp 475–502 | Cite as

Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors

  • Christian J. Bordé
Article

Abstract

We review the theory of atom-wave beam splitters using atomic transitions induced by electromagnetic interactions. Both the spatial and temporal dependences of the e.m.3 fields are introduced in order to compare the differences in momentum transfer which occur for pulses either in the time or in the space domains. The phases imprinted on the matter-wave by the splitters are calculated in the limit of weak e.m. and gravitational fields and simple rules are derived for practical atom interferometers. The framework is applicable to the Lamb-Dicke regime. Finally, a generalization of present 1D beam splitters to 2D or 3D is considered and leads to a new concept of multidimensional atom interferometers to probe inertial and gravitational fields especially well-suited for space experiments.

Gravito-inertial sensor atom-wave beam splitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Berman, P., (Ed.) (1997). Atom Interferometry, Academic, New York.Google Scholar
  2. [2]
    BordÉ, Ch. J., Salomon, Ch., Avrillier, S., van Lerberghe, A., BrÉant, Ch., Bassi, D., and Scoles, G. (1984). Phys. Rev. A 30, 1836-1848.Google Scholar
  3. [3]
    BordÉ, Ch. J. (1991). In Laser Spectroscopy X, World Scientific, Singapore, pp. 239-245.Google Scholar
  4. [4]
    Sterr, U., Sengstock, K., Ertmer, W., Riehle, F., and Helmck, J. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 293-362.Google Scholar
  5. [5]
    BordÉ, Ch. J. (1989). Phys. Lett. A 140, 10-12.Google Scholar
  6. [6]
    BordÉ, Ch. J. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 257-292.Google Scholar
  7. [7]
    BordÉ, Ch. J. (2001). C. R. Acad. Sci. Paris, t. 2 (SÉrie IV), 509-530.Google Scholar
  8. [8]
    BordÉ, Ch. J. (2002). Metrologia 39, 435-463.Google Scholar
  9. [9]
    Antoine, Ch., and BordÉ, Ch. J. (2003) Phys. Lett. A 306, 277-284.Google Scholar
  10. [10]
    Antoine, Ch., and BordÉ, Ch. J. (2003). J. Opt. B: Quant. Semiclass. Opt. 5, S199-S207.Google Scholar
  11. [11]
    Ishikawa, J., Riehle, F., Helmcke, J., and BordÉ, Ch. J. (1994). Phys. Rev. A 49, 4794-4825.Google Scholar
  12. [12]
    BordÉ, Ch. J., Courtier, N., du Burck, F., Goncharov, A. N., and Gorlicki, M. (1994). Phys. Lett. A 188, 187-197.Google Scholar
  13. [13]
    BordÉ, Ch. J. (1999). In Laser Spectroscopy, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, (Eds.), World Scientific, Singapore, pp. 160-169;BordÉ, Ch. J. (2002). In Frequency Standards and Metrology, P. Gill, (Ed.), World Scientific, Singapore, pp. 18-25;BordÉ, Ch. J. (2002). In Advances in the Interplay Between Quantum and Gravity Physics, P. G. Bergmann and V. de Sabbata (Eds.), Kluwer Academic, Dordrecht, The Netherlands, pp. 27-55.Google Scholar
  14. [14]
    BordÉ, Ch. J., and LÅmmerzahl, C. (1999). Ann. Physik (Leipzig) 8, 83-110.Google Scholar
  15. [15]
    LÅmmerzahl, C., and BordÉ, Ch. J. (1995). Phys. Lett. A 203, 59-67.Google Scholar
  16. [16]
    LÅmmerzahl, C., and BordÉ, Ch. J. (1999). Gen. Rel. Grav. 31, 635.Google Scholar
  17. [17]
    Marzlin, K.-P., and Audretsch, J. (1996). Phys. Rev. A 53, 1004-1013.Google Scholar
  18. [18]
    Antoine, Ch., and BordÉ, Ch. J. (in preparation).Google Scholar
  19. [19]
    BordÉ, Ch. J. (1990). Propagation of Laser Beams and of Atomic Systems, Les Houches Lectures, Session LIII;BordÉ, Ch. J. (1991). In Fundamental Systems in Quantum Optics,J. Dalibard, J.-M. Raimond, and J. Zinn-Justin (Eds.), Elsevier, Amsterdam, pp. 287-380.Google Scholar
  20. [20]
    Heupel, T., Mei, M., Niering, M., Gross, B., Weitz, M., HÅnsch, T. W., and BordÉ, Ch. J. (2002). Europhys. Lett. 57, 158-163.Google Scholar
  21. [21]
    BordÉ, Ch. J., Weitz, M., and HÅnsch, T. W. In Laser Spectroscopy, L. Bloomfield, T. Gallagher, and D. Larson (Eds.), American Institute of Physics, New York (1994) pp. 76-78.Google Scholar
  22. [22]
    Trebst, T., Binnewies, T., Helmcke, J., and Riehle, F. (2001). IEEE Trans. Instr. Meas. 50, 535-538 and references therein.Google Scholar
  23. [23]
    BordÉ, Ch. J. (2002). An Elementary Quantum Theory of Atom-Wave Beam Splitters: The ttt Theorem, Lecture notes for a mini-course, Institut fÝr Quantenoptik, UniversitÅt Hannover, GermanyGoogle Scholar
  24. [24]
    BordÉ, Ch. J., Karasiewicz, A., and Tourrenc, Ph. (1994). Int. J. Mod. Phys. D 3, 157-161.Google Scholar
  25. [25]
    BordÉ, Ch. J., Houard, J.-C., and Karasiewicz, A. (2001). In Gyros, Clocks and Interferometers: Testing Relativistic Gravity in Space, C. LÅmmerzahl, C. W. F. Everitt, and F. W. Hehl, (Eds.), Springer-Verlag, New York, pp. 403-438 (gr-qc/0008033).Google Scholar
  26. [26]
    Linet, B., and Tourrenc, P. (1976). Can. J. Phys. 54, 1129-1133.Google Scholar
  27. [27]
    Young, B. C., Kasevich, M., and Chu, S. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 363-406.Google Scholar
  28. [28]
    BordÉ, Ch. J., Sharma, J., Tourrenc, Ph., and Damour, Th. (1983). J. Physique Lett. 44, L983-L990.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Christian J. Bordé
    • 1
    • 2
  1. 1.Laboratoire de Physique des Lasers, UMR 7538 CNRSUniversité Paris-NordVilletaneuseFrance
  2. 2.Equipe de Relativité Gravitation et Astrophysique, LERMA, UMR 8112 CNRS-Observatoire de ParisUniversité Pierre et Marie CurieParisFrance

Personalised recommendations