Skip to main content
Log in

Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We review the theory of atom-wave beam splitters using atomic transitions induced by electromagnetic interactions. Both the spatial and temporal dependences of the e.m.3 fields are introduced in order to compare the differences in momentum transfer which occur for pulses either in the time or in the space domains. The phases imprinted on the matter-wave by the splitters are calculated in the limit of weak e.m. and gravitational fields and simple rules are derived for practical atom interferometers. The framework is applicable to the Lamb-Dicke regime. Finally, a generalization of present 1D beam splitters to 2D or 3D is considered and leads to a new concept of multidimensional atom interferometers to probe inertial and gravitational fields especially well-suited for space experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berman, P., (Ed.) (1997). Atom Interferometry, Academic, New York.

  2. BordÉ, Ch. J., Salomon, Ch., Avrillier, S., van Lerberghe, A., BrÉant, Ch., Bassi, D., and Scoles, G. (1984). Phys. Rev. A 30, 1836-1848.

    Google Scholar 

  3. BordÉ, Ch. J. (1991). In Laser Spectroscopy X, World Scientific, Singapore, pp. 239-245.

  4. Sterr, U., Sengstock, K., Ertmer, W., Riehle, F., and Helmck, J. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 293-362.

  5. BordÉ, Ch. J. (1989). Phys. Lett. A 140, 10-12.

    Google Scholar 

  6. BordÉ, Ch. J. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 257-292.

  7. BordÉ, Ch. J. (2001). C. R. Acad. Sci. Paris, t. 2 (SÉrie IV), 509-530.

    Google Scholar 

  8. BordÉ, Ch. J. (2002). Metrologia 39, 435-463.

    Google Scholar 

  9. Antoine, Ch., and BordÉ, Ch. J. (2003) Phys. Lett. A 306, 277-284.

    Google Scholar 

  10. Antoine, Ch., and BordÉ, Ch. J. (2003). J. Opt. B: Quant. Semiclass. Opt. 5, S199-S207.

    Google Scholar 

  11. Ishikawa, J., Riehle, F., Helmcke, J., and BordÉ, Ch. J. (1994). Phys. Rev. A 49, 4794-4825.

    Google Scholar 

  12. BordÉ, Ch. J., Courtier, N., du Burck, F., Goncharov, A. N., and Gorlicki, M. (1994). Phys. Lett. A 188, 187-197.

    Google Scholar 

  13. BordÉ, Ch. J. (1999). In Laser Spectroscopy, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, (Eds.), World Scientific, Singapore, pp. 160-169;BordÉ, Ch. J. (2002). In Frequency Standards and Metrology, P. Gill, (Ed.), World Scientific, Singapore, pp. 18-25;BordÉ, Ch. J. (2002). In Advances in the Interplay Between Quantum and Gravity Physics, P. G. Bergmann and V. de Sabbata (Eds.), Kluwer Academic, Dordrecht, The Netherlands, pp. 27-55.

  14. BordÉ, Ch. J., and LÅmmerzahl, C. (1999). Ann. Physik (Leipzig) 8, 83-110.

    Google Scholar 

  15. LÅmmerzahl, C., and BordÉ, Ch. J. (1995). Phys. Lett. A 203, 59-67.

    Google Scholar 

  16. LÅmmerzahl, C., and BordÉ, Ch. J. (1999). Gen. Rel. Grav. 31, 635.

    Google Scholar 

  17. Marzlin, K.-P., and Audretsch, J. (1996). Phys. Rev. A 53, 1004-1013.

    Google Scholar 

  18. Antoine, Ch., and BordÉ, Ch. J. (in preparation).

  19. BordÉ, Ch. J. (1990). Propagation of Laser Beams and of Atomic Systems, Les Houches Lectures, Session LIII;BordÉ, Ch. J. (1991). In Fundamental Systems in Quantum Optics,J. Dalibard, J.-M. Raimond, and J. Zinn-Justin (Eds.), Elsevier, Amsterdam, pp. 287-380.

  20. Heupel, T., Mei, M., Niering, M., Gross, B., Weitz, M., HÅnsch, T. W., and BordÉ, Ch. J. (2002). Europhys. Lett. 57, 158-163.

    Google Scholar 

  21. BordÉ, Ch. J., Weitz, M., and HÅnsch, T. W. In Laser Spectroscopy, L. Bloomfield, T. Gallagher, and D. Larson (Eds.), American Institute of Physics, New York (1994) pp. 76-78.

  22. Trebst, T., Binnewies, T., Helmcke, J., and Riehle, F. (2001). IEEE Trans. Instr. Meas. 50, 535-538 and references therein.

    Google Scholar 

  23. BordÉ, Ch. J. (2002). An Elementary Quantum Theory of Atom-Wave Beam Splitters: The ttt Theorem, Lecture notes for a mini-course, Institut fÝr Quantenoptik, UniversitÅt Hannover, Germany

  24. BordÉ, Ch. J., Karasiewicz, A., and Tourrenc, Ph. (1994). Int. J. Mod. Phys. D 3, 157-161.

    Google Scholar 

  25. BordÉ, Ch. J., Houard, J.-C., and Karasiewicz, A. (2001). In Gyros, Clocks and Interferometers: Testing Relativistic Gravity in Space, C. LÅmmerzahl, C. W. F. Everitt, and F. W. Hehl, (Eds.), Springer-Verlag, New York, pp. 403-438 (gr-qc/0008033).

    Google Scholar 

  26. Linet, B., and Tourrenc, P. (1976). Can. J. Phys. 54, 1129-1133.

    Google Scholar 

  27. Young, B. C., Kasevich, M., and Chu, S. (1997). In Atom Interferometry, P. Berman (Ed.), Academic, New York, pp. 363-406.

  28. BordÉ, Ch. J., Sharma, J., Tourrenc, Ph., and Damour, Th. (1983). J. Physique Lett. 44, L983-L990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordé, C.J. Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors. General Relativity and Gravitation 36, 475–502 (2004). https://doi.org/10.1023/B:GERG.0000010726.64769.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000010726.64769.6d

Navigation