Skip to main content
Log in

Gravitational Perturbations on Local Experiments in a Satellite: The Dragging of Inertial Frame in the HYPER Project

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a nearly free falling Earth satellite where atomic wave interferometers are tied to a telescope pointing towards a faraway star. They measure the acceleration and the rotation relatively to the local inertial frame. We calculate the rotation of the telescope due to the aberrations and the deflection of the light in the gravitational field of the Earth. We show that the deflection due to the quadrupolar momentum of the gravity is not negligible if one wants to observe the Lense-Thirring effect of the Earth. We consider some perturbation to the ideal device and we discuss the orders of magnitude of the phase shifts due to the residual tidal gravitational field in the satellite and we exhibit the terms which must be taken into account to calculate and interpret the full signal. Within the framework of a geometric model, we calculate the various periodic components of the signal which must be analyzed to detect the Lense-Thirring effect. We discuss the results which support a reasonable optimism. As a conclusion we put forward the necessity of a more complete, realistic and powerful model in order to obtain a final conclusion on the theoretical feasibility of the experiment as far as the observation of the Lense-Thirring effect is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Touboul, P., and Rodrigues, M. (2001). Class. Quant. Grav. 18, 2487.

    Google Scholar 

  2. [2] Nobili, A. M., Bramanti, D. L., Comandi, G., Toncelli, R., and Polacco, E. (2003). New Astron. 8, 371.

    Google Scholar 

  3. Rasel, E., Bingham, R., Bordé, C., Bouyer, P., Cadwell, M., Clairon, A., Danzmann, K., Dimarcq, N., Ertmer, W., Helmcke, J., Jentsch, C., Kent, B., Lämmerzahl, C., Landragin, A., Percival, I., Rasel, E. M., Salomon, C., Sandford, M., Schleich,W., Tourrenc, P.,Vitale, S., and Wolf, P. (2000). ESA Assessment Study Report, ESA-SCI, HYPER Hyper-Precision Cold Atom Interferometry in Space. Assessment Study Report, ESA-SCI (2000) 10.

  4. Jentsch, C., Muellerand, T., Chelkowski, S., Rasel, E., and Ertmer, W. (2003). Verhandl. DPG (VI), 38, 167.

    Google Scholar 

  5. Oberthaler, M., Bernet, S., Rasel, E., Schmiedmayer, J., and Zeilinger, A. (1996). Phys. Rev. A 54, 3165.

    Google Scholar 

  6. Gustavson, T., Landragin, A., and Kasevich, M. (2000). Class. Quant. Grav. 17, 2385.

    Google Scholar 

  7. Le Coq, Y., Thywissen, J., Rangwala, S., Gerbier, F., Richard, R., Delannoy, G., Bouyer, P., and Aspect, A. (2001). Phys. Rev. Lett. 87, 170403.

    Google Scholar 

  8. Snadden, M., McGuirk, J., Bouyer, P., Haritos, K., and Kasevich, M. (1998). Phys. Rev. Lett. 81, 971.

    Google Scholar 

  9. Ni, W.-T., and Zimmermann, M. (1978). Phys. Rev. D 17, 1473.

    Google Scholar 

  10. Li, W.-Q., and Ni, W.-T. (1979). J. Math. Phys. 20, 1473.

    Google Scholar 

  11. Antoine, C., and Bordé, C. (2003). J. Opt. B 5, S199.

    Google Scholar 

  12. Will, C. (1981). Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  13. Marchal, C. (1996). Bulletin du Mu?eum National d'Histoire Naturelle 4ème série section C 18, 517.

    Google Scholar 

  14. Linet, B., and Tourrenc, P. (1976). Can. J. Phys. 54, 1129.

    Google Scholar 

  15. Ibáñez, J. (1983). Astron. Astrophys. 124, 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angonin-Willaime, MC., Ovido, X. & Tourrenc, P. Gravitational Perturbations on Local Experiments in a Satellite: The Dragging of Inertial Frame in the HYPER Project. General Relativity and Gravitation 36, 411–434 (2004). https://doi.org/10.1023/B:GERG.0000010485.62147.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000010485.62147.0e

Navigation