Skip to main content
Log in

On the Possibility of Testing the Weak Equivalence Principle with Artificial Earth Satellites

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we examine the possibility of testing the equivalence principle, in its weak form, by analyzing the orbital motion of a pair of artificial satellites of different composition moving along orbits of identical shape and size in the gravitational field of the Earth. It turns out that the obtainable level of accuracy is, realistically, of the order of 10−10 or slightly better. It is limited mainly by the fact that, due to the unavoidable orbital injection errors, it would not be possible to insert the satellites in orbits with exactly the same radius and that such difference could be known only with a finite precision. The present–day level of accuracy, obtained with torsion balance Earth–based measurements and the analysis of the Earth–Moon motion in the gravitational field of the Sun with the Lunar Laser Ranging technique, is of the order of 10−13. The proposed space–based missions STEP, μSCOPE, GG and SEE aim to reach a 10−15–10−18 precision level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Will, C. M. (1993). Theory and Experiment in Gravitational Physics, 2nd Edition, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  2. Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, New York.

    Google Scholar 

  3. Haugan, M. P., and Lämmerzahl, C. (2001). In: Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, C. Lämmerzahl, C.W. F. Everitt, and F.W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 195–212.

    Google Scholar 

  4. Will, C. M. (2001). Living Rev. Rel. 2001-4 [Article in Online Journal] cited on: 25 June 2003, http://www.livingreviews.org/Articles/Volume4/2001-4will.

  5. Nordvedt, K. (1968a). Phys. Rev. 169, 1017–1025.

    Google Scholar 

  6. Nordvedt, K. (1968b). Phys. Rev. 170, 1186–1187.

    Google Scholar 

  7. Anderson, J. D., and Williams, J. G. (2001). Class. Quant. Grav. 18, 2447–2456.

    Google Scholar 

  8. Adelberger, E. G. (2001). Class. Quant. Grav. 18, 2397–2405.

    Google Scholar 

  9. Lockerbie, N., Mester, J. C., Torii, R., Vitale, S., and Worden, P. W. (2001.) In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 213–247.

    Google Scholar 

  10. Touboul, P. (2001.) In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer-Verlag, Berlin, pp. 273–291.

    Google Scholar 

  11. Nobili, A. M., Bramanti, D., Polacco, E., Roxburgh, I. W., Comandi, G., and Catastini, G. (2000). Class. Quant. Grav. 17, 2347–2349.

    Google Scholar 

  12. Sanders, A. J., Alexeev, A. D., Allison, S. W., Antonov, V., Bronnikov, K. A., Campbell, J. W., Cates, M. R., Corcovilos, T. A., Earl, D. D., Gadfort, T., Gillies, G. T., Harris, M. J., Kolosnitsyn, N. I., Konstantinov, M. Y., Melnikov, V. N., Newby, R. J., Schunk, R. G., and Smalley, L. L. (2000). Class. Quant. Grav. 17, 2331–2346.

    Google Scholar 

  13. Damour, T., and Polyakov, A. M. (1994a). Nucl. Phys. B 423, 532–558.

    Google Scholar 

  14. Damour, T., and Polyakov, A. M. (1994b). Gen. Rel. Grav. 26, 1171–1176.

    Google Scholar 

  15. Will, C. M. (1989). Phys. Rev. Lett. 62, 369–372.

    Google Scholar 

  16. Moffat, J. W., and Gillies, G. T. (2002). N. J. Phys. 4, 92.

    Google Scholar 

  17. Iorio, L. (2001a). Celest. Mech. 79, 201–230.

    Google Scholar 

  18. Kaula, W. M. (1966). Theory of Satellite Geodesy, Blaisdell, Waltham, 124 pp. Amsterdam, 4-8 October (1999).

    Google Scholar 

  19. Mashhoon, B., Gronwald, F., and Theiss, D. S. (1999). Annalen Phys. 8, 135–152.

    Google Scholar 

  20. Mashhoon, B., Iorio, L., and Lichtenegger, H. I. M. (2001). Phys. Lett. A 292, 49–57.

    Google Scholar 

  21. Iorio, L., Lichtenegger, H. I. M., and Mashhoon, B. (2002). Class. Quant. Grav. 19, 39–49.

    Google Scholar 

  22. McCarthy, D. D. (1996). IERS Conventions (1996), IERS Technical Note 21, U.S. Naval Observatory.

  23. Lemoine, F. G.,Kenyon, S. C., Factor, J. K.,Trimmer,R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B.,Torrence,M.H.,Wang,Y. M.,Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998). In The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861.

  24. Peterson, G. E. (1997). Report CSR-97-1, Center for Space Research, The University of Texas at Austin.

  25. Iorio, L. (2001b). Int. J. Mod. Phys. D 10, 465–476.

    Google Scholar 

  26. Davis, E., Stanton, R. H., Dunn, C. E., and Thomas, J. B. (1999). In 50th International Astronautical Congress, IAF-99-B.2.05 Conference AAS 90-034. Amsterdam, 4-8 October (1999).

  27. Milani, A., Nobili, A. M., and Farinella, P. (1987). Non-Gravitational Perturbations and Satellite Geodesy, Adam Hilger, Bristol, p. 125.

    Google Scholar 

  28. Lucchesi, D. (2001). Planet. Space Sci. 49, 447–463.

    Google Scholar 

  29. Lucchesi, D. (2002). Planet. Space Sci. 50, 1067–1100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. On the Possibility of Testing the Weak Equivalence Principle with Artificial Earth Satellites. General Relativity and Gravitation 36, 361–372 (2004). https://doi.org/10.1023/B:GERG.0000010481.56652.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000010481.56652.5e

Navigation