Gravitation Without the Equivalence Principle
- 128 Downloads
- 14 Citations
Abstract
In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. On the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- [1]Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'emann,Y. (1995). Phys. Rep. 258, 1; Blagojevi?, M. (2002). Gravitation and Gauge Symmetries, IOP Publishing, Bristol, United Kingdom.Google Scholar
- [2]Hammond, R. T. (2002). Rep. Prog. Phys. 65, 599.Google Scholar
- [3]Hayashi, K. and Shirafuji, T. (1979). Phys. Rev. D 19, 3524.Google Scholar
- [4]Obukhov, Y. N. and Pereira, J. G. (2003). Phys. Rev. D 67, 044016.Google Scholar
- [5]de Andrade, V. C. and Pereira, J. G. (1997). Phys. Rev. D 56, 4689.Google Scholar
- [6]Synge, J. L. (1960). Relativity: The General Theory, Wiley, New York.Google Scholar
- [7]Damour, T. (2001). In Comptes Rendus de l'Academie des Sciences (Paris), C. Bordé and P. Touboul (Ed.) (gr-qc/0109063).Google Scholar
- [8]Aldrovandi, R. and Pereira, J. G. (1995). An Introduction to Geometrical Physics, World Scientific, Singapore.Google Scholar
- [9]de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Phys. Rev. Lett. 84, 4533.Google Scholar
- [10]Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields, Pergamon, Oxford.Google Scholar
- [11]Aldrovandi, R., Barros, P. B., and Pereira, J. G. (2003). Gen. Rel. Grav. 35, 991.Google Scholar
- [12]Will, C. M. (2001). Living Rev. Relat. 4, 4; Haugan, M. P., and Lämmerzahl, C. (2001). Lect. Notes Phys. 562, 195.Google Scholar
- [13]de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2001). Phys. Rev. D 64, 027502.Google Scholar
- [14]Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, New York.Google Scholar
- [15]Lämmerzahl, C. (1996). Gen. Rel. Grav. 28, 1043; Lämmerzahl, C. (1998). Acta Phys. Polon. 29, 1057; Chiao, R. Y. (2003). In Wheeler's 90th Birthday Symposium Proceedings, Cambridge University Press, Cambridge, United Kingdom (gr-qc/0303100).Google Scholar
- [16]Fock, V. A. and Iwanenko, D. (1929). Z. Phys. 54, 798.Google Scholar