General Relativity and Gravitation

, Volume 36, Issue 1, pp 101–110 | Cite as

Gravitation Without the Equivalence Principle

  • R. Aldrovandi
  • J. G. Pereira
  • K. H. Vu


In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. On the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.

Gravitation teleparallelism equivalence principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'emann,Y. (1995). Phys. Rep. 258, 1; Blagojevi?, M. (2002). Gravitation and Gauge Symmetries, IOP Publishing, Bristol, United Kingdom.Google Scholar
  2. [2]
    Hammond, R. T. (2002). Rep. Prog. Phys. 65, 599.Google Scholar
  3. [3]
    Hayashi, K. and Shirafuji, T. (1979). Phys. Rev. D 19, 3524.Google Scholar
  4. [4]
    Obukhov, Y. N. and Pereira, J. G. (2003). Phys. Rev. D 67, 044016.Google Scholar
  5. [5]
    de Andrade, V. C. and Pereira, J. G. (1997). Phys. Rev. D 56, 4689.Google Scholar
  6. [6]
    Synge, J. L. (1960). Relativity: The General Theory, Wiley, New York.Google Scholar
  7. [7]
    Damour, T. (2001). In Comptes Rendus de l'Academie des Sciences (Paris), C. Bordé and P. Touboul (Ed.) (gr-qc/0109063).Google Scholar
  8. [8]
    Aldrovandi, R. and Pereira, J. G. (1995). An Introduction to Geometrical Physics, World Scientific, Singapore.Google Scholar
  9. [9]
    de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Phys. Rev. Lett. 84, 4533.Google Scholar
  10. [10]
    Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields, Pergamon, Oxford.Google Scholar
  11. [11]
    Aldrovandi, R., Barros, P. B., and Pereira, J. G. (2003). Gen. Rel. Grav. 35, 991.Google Scholar
  12. [12]
    Will, C. M. (2001). Living Rev. Relat. 4, 4; Haugan, M. P., and Lämmerzahl, C. (2001). Lect. Notes Phys. 562, 195.Google Scholar
  13. [13]
    de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2001). Phys. Rev. D 64, 027502.Google Scholar
  14. [14]
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, New York.Google Scholar
  15. [15]
    Lämmerzahl, C. (1996). Gen. Rel. Grav. 28, 1043; Lämmerzahl, C. (1998). Acta Phys. Polon. 29, 1057; Chiao, R. Y. (2003). In Wheeler's 90th Birthday Symposium Proceedings, Cambridge University Press, Cambridge, United Kingdom (gr-qc/0303100).Google Scholar
  16. [16]
    Fock, V. A. and Iwanenko, D. (1929). Z. Phys. 54, 798.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • R. Aldrovandi
    • 1
  • J. G. Pereira
    • 1
  • K. H. Vu
    • 1
  1. 1.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil

Personalised recommendations