Skip to main content
Log in

Efficient Method for Analysis of QTL Using F1 Progenies in an Outcrossing Species

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In the present paper, we proposed a statistical procedure based on composite interval mapping for accurate analysis of quantitative trait loci (QTL) for individuals sampled from an outcrossing population with two-generation families consisting of the sampled individuals and F1 progenies obtained by crossing them as parental individuals. In the proposed procedure, haplotypes of markers of parental individuals were reconstructed based on the genotypes of F1 progenies and QTL analyses with composite interval mapping were conducted separately for each of parents as well as jointly for both parents. A least squares method was applied to the composite interval mapping, where some of markers were selected as cofactors to absorb the variation induced by QTL located elsewhere in the genome. The procedure was evaluated for the efficiency in detecting QTL and the precision of estimates of locations and effects of QTL using simulations. It was shown that QTL with interaction between paternal and maternal alleles was effectively detected by joint analysis of both parents, while a QTL segregating only in one parent, closely linked to a QTL segregating only in the other parent, was successfully detected by analyzing separately each of the parents with inclusion of markers of both parents. The proposed procedure can provide detailed genetic information useful for marker assisted breeding in an outcrossing species such as forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H., M. Nakano, A. Nakatsukasa, M. Nakayama, M. Koshioka & M. Yamagishi, 2002. Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor. Appl. Genet. 105: 1175–1182.

    PubMed  Google Scholar 

  • Bradshaw Jr., H.D. & R.F. Stettler, 1995. Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139: 963–973.

    PubMed  Google Scholar 

  • Brugmans, B., R.G. van der Hulst, R.G. Visser, P. Lindhout & H.J. van Eck, 2000. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res. 31: e55.

    Google Scholar 

  • Butcher, P.A. & G.F. Moran, 2000. Genetic linkage mapping in Acacia mangium. 2. Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci. Theor. Appl. Genet. 101: 594–605.

    Google Scholar 

  • Byrne, M., J.C. Murrell, J.V. Owen, P. Kriedemann, E.R. Williams & G.F. Moran, 1997a. Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet.94: 674–681.

    Google Scholar 

  • Byrne, M., J.C. Murrell, J.V. Owen, E.R. Williams & G.F. Moran, 1997b. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor. Appl. Genet. 95: 975–979.

    Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  Google Scholar 

  • Dunemann, F., R. Kahnau & I. Stange.1999. Analysis of complex leaf and.ower characters in Rhododendron using a molecular linkage map.Theor. Appl. Genet. 98: 1146–1155.

    Google Scholar 

  • Emebiri, L.C., M.E. Devey & A.C. Matheson, 1998. Interval mapping of quantitative trait loci a.ecting NESTUR, a stem growth effciency index of radiata pine seedlings. Theor. Appl. Genet. 97: 1062–1068.

    Google Scholar 

  • Emebiri, L.C., M.E. Devey, A.C. Matheson & M.U. Slee, 1998. Age-related changes in the expression of QTLs for growth in radiata pine seedlings. Theor. Appl. Genet. 97: 1053–1061.

    Google Scholar 

  • Frewen, B.E., T.H. Chen, G.T. Howe, J. Davis, A. Rohde, W. Boerjan & H.D. Bradshaw Jr., 2000. Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 154: 837–845.

    PubMed  Google Scholar 

  • Grattapaglia, D., F.L. Bertolucci, R. Penchel & R. Sedero., 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144: 1205–1214.

    PubMed  Google Scholar 

  • Grattapaglia, D., F.L. Bertolucci & R. Sedero., 1995. Genetic mapping of QTL's controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudotestcross strategy and RAPD markers. Theor. Appl. Genet. 90: 933–947.

    Google Scholar 

  • Grattapaglia, D. & R. Sedero., 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137: 1121–1137.

    PubMed  Google Scholar 

  • Groover, A., M. Devey, T. Fiddler, J. Lee, R. Megraw, T. Mitchel-Olds, B. Sherman, S. Vujcic, C. Williams & D. Neale, 1994. Identification of quantitative trait loci in.uencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138: 1293–1300.

    PubMed  Google Scholar 

  • Hanley, S., J.H.A. Barker, J.W. Van Ooijen, C. Aldam, S.L. Harris, I. Ahman, S. Larsson & A. Karp, 2002. A genetic linkage map of willow (Salix viminalis)based on AFLP and microsatellite markers. Theor. Appl. Genet. 105: 1087–1096.

    PubMed  Google Scholar 

  • Herran, A., L. Estioko, D. Becker, M.J.B. Rodriguez, W. Rhode & E. Ritter, 2000. Linkage mapping and QTL analysis in coconut (Cocos nucifera L). Theor. Appl. Genet. 101: 292–300.

    Google Scholar 

  • Hurme, P., M.J. Sillanpää, E. Arjas, T. Repoc & O. Savolainena, 2000. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis. Genetics 156: 1309–1322.

    PubMed  Google Scholar 

  • Jermstad, K.D., D.L. Bassoni, K.S. Jech, N.C. Wheeler & D.B. Neale, 2001a. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-r.I. Timing of vegetative bud.ush.Theor. Appl. Genet. 102: 1142–1151.

    Google Scholar 

  • Jermstad, K.D., D.L. Bassoni, N.C. Wheeler, T.S. Anekonda, S.N. Aitken, W.T. Adams & D.B. Neale, 2001b. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-r.II.Spring and fall cold-hardiness. Theor. Appl. Genet. 102: 1152–1158.

    Google Scholar 

  • Knott, S.A., J.M. Elsen & C.S. Haley, 1996. Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71–80.

    Google Scholar 

  • Manly, K.F. & J.M. Olson, 1999. Overview of QTL mapping software and introduction to map manager QTs. Mammal. Genome. 10: 327–334.

    Google Scholar 

  • Nikaido, A.M., T. Ujino, H. Iwata, K. Yoshimura, H. Yoshimura, Y. Suyama, M. Murai, K. Nagasaka & Y. Tsumura, 2000. AFLP and CAPS linkage maps of Cryptomeria japonica.Theor. Appl. Genet. 100: 825–831.

    Google Scholar 

  • Sewell, M.M., D.L. Bassoni, R.A. Megraw, N.C. Wheeler & D.B. Neale, 2000. Identification of QTLs in.uencing wood property traits in loblolly pine (Pinus taeda L.). I.Physical wood properties. Theor. Appl. Genet. 101: 1273–1281.

    Google Scholar 

  • Sewell, M.M., M.F. Davis, G.A. Tuskan, N.C. Wheeler, C.C. Elam, D.L. Bassoni & D.B. Neale, 2002. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.) II.Chemical wood properties. Theor.Appl. Genet. 104: 214–222.

    PubMed  Google Scholar 

  • Thamarus, K.A., K. Groom, J. Murrell, M. Byne & G.F. Moran, 2002. A genetic linkage map for Eucalyptus globulus with candidate loci for wood, bre, and.oral traits. Theor. Appl.Genet. 104: 379–387.

    PubMed  Google Scholar 

  • Tsarouhas, V., U. Gullberg & U. Lagercrantz, 2002. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor.A ppl. Genet. 105: 277–288.

    Google Scholar 

  • Verhaegen, D., C. Plomion, J.M. Gion, M. Poitel, P. Costa & A. Kremer, 1997. Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspeci c hybrid progeny, stability of QTL expression across different ages. Theor. Appl. Genet. 95: 597–608.

    Google Scholar 

  • Weng, C., T.L. Kubisiak, C.D. Nelson & M. Stine, 2002. Mapping quantitative trait loci controlling early growth in a (longleaf pine x slash pine) x slash pine BC1 family. Theor. Appl. Genet. 104: 852–859.

    PubMed  Google Scholar 

  • Wu, R.L., Y.F. Han, J.J. Hu, J.J. Fang, L. Li, M. L.Li & Z.-B. Zeng, 2000. An integrated genetic map of Populus deltoides based on ampli ed fragment length polymorphisms. Theor. Appl. Genet. 100: 1249–1256.

    Google Scholar 

  • Yin, T.M., X.R. Wang, B. Andersson & E. Lerceteau-Köhler, 2003. Nearly complete genetic maps of Pinus sylvestris L. (Scots pine) constructed by AFLP marker analysis in a full-sib family. Theor. Appl. Genet. 106: 1075–1083.

    PubMed  Google Scholar 

  • Yoshimaru, H., K. Ohba, K. Tsurumi, N. Tomaru, M. Murai, Y. Mukai, Y. Suyama, Y. Tsumura, T. Kawahara & Y. Sakamaki, 1998. Detection of quantitative trait loci for juvenile growth,.ower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theor. Appl.Genet. 97: 45–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Awata, T. Efficient Method for Analysis of QTL Using F1 Progenies in an Outcrossing Species. Genetica 122, 173–183 (2004). https://doi.org/10.1023/B:GENE.0000041001.81514.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000041001.81514.1f

Navigation