Skip to main content
Log in

Pleiotropic Effects of methoprene-tolerant(Met), a Gene Involved in Juvenile Hormone Metabolism, on Life History Traits in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Life history theory assumes that there are alleles with pleiotropic effects on fitness components. Although quantitative genetic data are often consistent with pleiotropy, there are few explicit examples of pleiotropic loci. The Drosophila melanogastergene Methoprene-tolerant(Met) may be such a locus. The Met gene product, a putative juvenile hormone receptor, facilitates the action of juvenile hormone (JH) and JH analogs; JH affects many life history traits in arthropods. Here we use quantitative complementation to investigate effects of Met mutant and wildtype alleles on female developmental time, onset of reproduction, and fecundity. Whereas the alleles did not differ in their effects on developmental time, we detected allelic variation for the onset of reproduction and for age-specific fecundity. Alleles influenced phenotypic covariances among traits (developmental time and onset of reproduction; onset of reproduction and both early and late fecundity; early and late fecundity), suggesting that alleles of Metvary in their pleiotropic effects upon life history. Furthermore, the genetic covariance between developmental time and early fecundity attributed to alleles of Met was negative, indicating consistent pleiotropic effects among alleles on these traits. The allelic effects of Metsupport genetic models where pleiotropy at genes associated with hormone regulation can contribute to the evolution of life history traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arantes-Oliveira, N., J. Apfeld, A. Dillin & C. Kenyon, 2002. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295: 502–505.

    PubMed  Google Scholar 

  • Ádám G., N. Perrimon & S. Noselli, 2003. The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development 130: 2397–2406.

    PubMed  Google Scholar 

  • Ashburner, M., 1989. Drosophila–a laboratory handbook. Cold Spring Harbor Press, Cold Spring Harbor.

    Google Scholar 

  • Ashok, M., C. Turner & T.G. Wilson, 1998. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. USA 95: 2761–2766.

    PubMed  Google Scholar 

  • Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Ann. Rev. Genet. 23: 337–370.

    PubMed  Google Scholar 

  • Belgacem, Y.H. & J.-R. Martin, 2002. Neuroendocrine control of a sexually dimorphic behavior by a few neurons of the pars intercerebralis in Drosophila. Proc. Natl. Acad. Sci. USA 99: 15154–15158.

    PubMed  Google Scholar 

  • Bownes, M., 1982. Hormonal and genetic regulation of vitellogenesis in Drosophila. Quart. Rev. Biol. 57: 247–274.

    PubMed  Google Scholar 

  • Caspari, E., 1952. Pleiotropic gene action. Evolution 6: 1–18.

    Google Scholar 

  • Cheverud, J.M., 2001. The genetic architecture of pleiotropic relations and Differential epistasis, pp.411–433 in The Character Concept in Evolutionary Biology, edited by G.P. Wagner. Academic Press, San Diego.

    Google Scholar 

  • DeSalle, R. & A.R. Templeton, 1986. The molecular through ecological genetics of abnormal abdomen. III. Tissue-specific Differential replication of ribosomal genes modulates the abnormal abdomen phenotype in Drosophila mercatorum. Genetics 112: 877–886.

    PubMed  Google Scholar 

  • Dubrovsky, E.B., V.A. Dubrovskaya, A.L. Bilderback & E.M. Berger, 2000. The isolation of two juvenile-hormone inducible genes in Drosophila melanogaster. Dev.Biol. 224: 486–495.

    PubMed  Google Scholar 

  • Finch, C.E. & M.R. Rose, 1995. Hormones and the physiological architecture of life history evolution. Quart.Rev. Biol. 70: 1–52.

    PubMed  Google Scholar 

  • Gilbert, L.I., N.A. Granger & R.M. Roe, 2000. The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem. Mol. Biol. 30: 617–644.

    PubMed  Google Scholar 

  • Gilbert, L.I., R. Rybczynski R. & S.S. Tobe, 1996. Endocrine cascade in insect metamorphosis, pp. 59–107 in Metamorphosis–Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, edited by L.I. Gilbert, J.R. Tata & B.G. Atkinson. Academic Press, San Diego.

    Google Scholar 

  • Gromko, M.H., 1995. Unpredictability of correlated response to selection: pleiotropy and sampling interact. Evolution 49: 685–693.

    Google Scholar 

  • Gurganus, M.C., S.V. Nuzhdin, J.W. Leips & T.F.C. Mackay, 1999. High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152: 1585–1604.

    PubMed  Google Scholar 

  • Haag, E.S. & J.R. True, 2001. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55: 1077–1084.

    PubMed  Google Scholar 

  • Harris, R.J., 1985. A Primer of Multivariate Statistics. Academic Press, New York.

    Google Scholar 

  • Hartfelder, K., 2000. Insect juvenile hormone: from “status quo ”to high society. Brazil. J. Med. Biol. Res. 33: 157–177.

    Google Scholar 

  • Herman, W.S. & M. Tatar, 2001. Juvenile hormone regulation of aging in the migratory monarch butterfly. Proc. R. Soc. Lond. B 268: 2509–2514.

    PubMed  Google Scholar 

  • Houle, D., 1991. Genetic covariance of tness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630–648.

    Google Scholar 

  • Houle, D., 1998. How should we explain variation in the genetic variance of traits? Genetica 102/103: 241–253.

    Google Scholar 

  • Houle, D., K.A. Hughes, D.K. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of spontaneous mutation on quantitative traits. I.Variances and covariances of life history traits. Genetics 138: 773–785.

    PubMed  Google Scholar 

  • Hudak, M.J. & M.H. Gromko, 1989. Response to selection for early and late development of sexual maturity in Drosophila melanogaster. Anim. Behav. 38: 344–351.

    Google Scholar 

  • Johnson, T.E. & D.R. Shook, 1997. Identification and mapping of genes determining longevity, pp. 108–126 in Between Zeus and the Salmon: The Biodemography of Longevity, edited by K.W. Wachter & C.E. Finch. National Academy Press, Washington.

    Google Scholar 

  • Jones, G., 1995. Molecular mechanisms of action of juvenile hormone. Ann.Rev. Entomol. 40: 147–169.

    Google Scholar 

  • Jowett, T. & J.H. Postlewaith, 1980. The regulation of yolk peptide synthesis in Drosophila ovaries and fat body by 20-hydroxyecdysone and a juvenile hormone analog. Dev. Biol. 80: 225–234.

    PubMed  Google Scholar 

  • Ketterson, E.D. & V. Nolan, 1992. Hormones and life histories: an integrative approach. Am. Nat. 140: S33–S62.

    Google Scholar 

  • Knight, C.G., R.B.R. Azevedo & A.M. Leroi, 2001. Testing life-history pleiotropy in Caenorhabditis elegans. Evolution 55: 1795–1804.

    PubMed  Google Scholar 

  • Leroi, A., 2001. Molecular signals versus the Loi de Balancement. Trends Ecol. Evol. 16: 24–29.

    PubMed  Google Scholar 

  • Lin, Y.-J., L. Seroude & S. Benzer, 1998. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946.

    Google Scholar 

  • Long, A.D., S.L. Mullaney, T.F.C. Mackay & C.H. Langley, 1996. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci a.ecting bristle number in Drosophila melanogaster. Genetics 144: 1497–1510.

    PubMed  Google Scholar 

  • Lyman, R.F. & T.F.C. Mackay, 1998. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the delta-hairless gene region.Genetics 149: 983–998.

    PubMed  Google Scholar 

  • Mackay, T.F.C. & J.D. Fry, 1996. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics 144: 671–688.

    PubMed  Google Scholar 

  • Manning, A., 1967. The control of sexual receptivity in female Drosophila. Anim.Behav. 15: 239–250.

    PubMed  Google Scholar 

  • Martorell, C., M.A. Toro & C. Gallego, 1998. Spontaneous mutation for life-history traits in Drosophila melanogaster. Genetica 102/103: 315–324.

    Google Scholar 

  • Maynard Smith, J., 1958. The effects of temperature and of egg-laying on longevity of Drosophila subobscura. J. Exp. Biol. 35: 832–842.

    Google Scholar 

  • Minkoff, C. & T.G. Wilson, 1992. The competitive ability and tness components of the methoprene-tolerant (Met) Drosophila mutant resistant to juvenile hormone analog insecticides. Genetics 131: 91–97.

    PubMed  Google Scholar 

  • Nijhout, H.F., 1994. Insect Hormones. Princeton University Press, Princeton.

    Google Scholar 

  • Palsson, A. & G. Gibson, 2000. Quantitative developmental genetic analysis reveals that the ancestral dipteran wing vein patterns is conserved in Drosophila melanogaster. Dev. Gen. Evol. 210: 617–622.

    Google Scholar 

  • Partridge, L. & N.H. Barton, 1993. Optimality, mutation and the evolution of ageing. Nature 362: 305–311.

    Google Scholar 

  • Partridge, L., N. Prowse & P. Pignatelli, 1999. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. Lond. B 266: 255–261.

    PubMed  Google Scholar 

  • Pigliucci, M., 1998. Ecological and evolutionary genetics of Arabidopsis.Trends Plant Sci. 3: 485–489.

    Google Scholar 

  • Pigliucci, M. & J. Schmitt, 1999. Genes a.ecting phenotypic plasticity in Arabidopsis: pleiotropic effects and reproductive tness of photomorphogenic mutants. J. Evol. Biol. 12: 551–562.

    Google Scholar 

  • Pursley, S., M. Ashok & T.G. Wilson, 2000. Intracellular localization and tissue speci city of the Methoprene-tolerant (Met )gene product in Drosophila melanogaster. Insect Biochem. Mol. Biol. 30: 839–845.

    PubMed  Google Scholar 

  • Restifo, L.L. & T.G. Wilson, 1998. A juvenile hormone agonist reveals distinct developmental pathways mediated by ecdysone-inducible Broad Complex transcription factors. Dev. Genet. 22: 141–159.

    PubMed  Google Scholar 

  • Riddiford, L., 1994. Cellular and molecular actions of juvenile hormone.I.General considerations and premetamorphic actions. Adv. Insect Physiol. 24: 213–274.

    Google Scholar 

  • Riddiford, L.M., 1996. Molecular aspects of juvenile hormone action in insect metamorphosis, pp.223–251 in Metamorphosis–Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, edited by L.I. Gilbert, J.R. Tata & B.G. Atkinson. Academic Press, San Diego.

    Google Scholar 

  • Rockwell, R.F. & J. Grossfield, 1978. Drosophila: behavioral cues for oviposition. Am. Mid. Nat. 99: 361–368.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.

    Google Scholar 

  • Rol., J. & M.T. Siva-Jothy, 2002. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. USA 99: 9916–9918.

    PubMed  Google Scholar 

  • Rose, M.R., 1985. Life history evolution with antagonistic pleiotropy and overlapping generations. Theor.Pop.Biol. 28: 342–358.

    Google Scholar 

  • Rose, M.R., 1991. Evolutionary Biology of Aging.Oxford University Press, New York.

    Google Scholar 

  • Rose, M.R. & B. Charlesworth, 1981. Genetics of life-history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187–196.

    PubMed  Google Scholar 

  • Sall, J. & A. Lehman, 1996. JMP Start Statistics–A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. SAS Institute Inc., Duxbury Press, Belmont.

    Google Scholar 

  • Salmon, A.B., D.B. Marx & L.G. Harshman, 2001. A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution 55: 1600–1608.

    PubMed  Google Scholar 

  • SAS Institute, 2000. SAS/STAT User's Guide, Vers.8. SAS Institute, Cary, NC.

    Google Scholar 

  • Schmitt, J., A.C. McCormac & H. Smith, 1995. A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am. Nat. 146: 937–953.

    Google Scholar 

  • Shemshedini, L., M. Lanoue & T.G. Wilson, 1990. Evidence for a juvenile hormone receptor involved in protein synthesis in Drosophila melanogaster. J. Biol. Chem. 265: 1913–1918.

    PubMed  Google Scholar 

  • Shemshedini, L. & T.G. Wilson, 1990. Resistance to juvenile hormone and insect growth regulator in Drosophila is associated with altered cytosolic juvenile hormone-binding protein. Proc. Natl. Acad. Sci. USA 87: 2072–2076.

    PubMed  Google Scholar 

  • Silbermann, R. & M. Tatar, 2000. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 54: 2038–2045.

    PubMed  Google Scholar 

  • Sinervo, B. & E. Svensson, 1998. Mechanistic and selective causes of life history trade-offs and plasticity. Oikos: 83: 432–442.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1995. Biometry, 3rd edn. Freeman, New York.

    Google Scholar 

  • Soller, M., M. Bownes & E. Kubli, 1999. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208: 337–351.

    PubMed  Google Scholar 

  • Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stearns, S.C. & M. Kaiser, 1996. Effects on tness components of P-element inserts in Drosophila melanogaster: analysis of tradeoffs. Evolution 50: 795–806.

    Google Scholar 

  • Stearns, S.C. & L. Partridge, 2001. The genetics of aging in Drosophila, pp.353–368 in Handbook of the Biology of Aging, edited by E.J. Masoro & S.N. Austad. Academic Press, San Diego.

    Google Scholar 

  • Tatar, M., A. Bartke & A. Antebi, 2003. The endocrine regulation of aging by insulin-like signals.Science 299: 1346–1351.

    PubMed  Google Scholar 

  • Tatar, M., S.A. Chien & N.K. Priest, 2001. Negligible senescence during reproductive diapause in Drosophila melanogaster.Am. Nat. 158: 248–258.

    Google Scholar 

  • Tatar, M., A. Kopelman, D. Epstein, M.-P. Tu, C.-M. Yin & R.S. Garofalo, 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110.

    PubMed  Google Scholar 

  • Tatar, M., D.E.L. Promislow, A.A. Khazaeli & J.W. Curtsinger, 1996. Age-specific patterns of genetic variance in Drosophila melanogaster.Genetics 143: 849–858.

    PubMed  Google Scholar 

  • Tatar, M. & C.-M. Yin, 2001. Slow aging during insect reproductive diapause: why butter.ies, grasshoppers and flies are like worms. Exp.Geront. 36: 723–738.

    Google Scholar 

  • Teal, P.E.A., Y. Gomze-Simuta & A.T. Proveaux, 2000. Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proc. Natl. Acad. Sci. USA 97: 3708–3712.

    PubMed  Google Scholar 

  • Templeton, A.R. & M.A. Rankin, 1978. Genetic revolutions and the control of insect populations, pp.83–112 in The Screw-worm Problem, edited by R.H. Richardson. University of Texas Press, Austin.

    Google Scholar 

  • Truman, J.W. & L.M. Riddiford, 2002. Endocrine insights into the evolution of metamorphosis in insects. Ann. Rev. Entom. 47: 467–500.

    PubMed  Google Scholar 

  • van Tienderen, P.H., I. Hammad & F.C. Zwaal, 1996. Pleiotropic e.ects of.owering time genes in the annual crucifer Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 82: 169–174.

    Google Scholar 

  • von Ende, C.N., 2001. Repeated-measures analysis: growth and other time-dependent measures. pp. 134–157 in Design and analysis of Ecological Experiments, 2nd edn., edited by S.M. Scheiner & J. Gurevitch. Oxford University Press, Oxford.

    Google Scholar 

  • Wheeler, D.E. & H.F. Nijhout, 2003. A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. BioEssays 25: 994–1001.

    PubMed  Google Scholar 

  • Williams, G.C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

  • Wilson, T.G., 1982. A correlation between juvenile hormone de ciency and vitellogenic oocyte degeneration in Drosophila melanogaster. Roux Arch. Dev. Biol. 191: 257–263.

    Google Scholar 

  • Wilson, T.G. & M. Ashok, 1998. Insecticide resistance resulting from an absence of target-site gene product. Proc. Natl. Acad. Sci. USA 95: 14040–14044.

    PubMed  Google Scholar 

  • Wilson, T.G. & J. Fabian, 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 118: 190–201.

    PubMed  Google Scholar 

  • Wilson, T.G., M.H. Landers & G.M. Happ, 1983. Precocene I and II inhibition of vitellogenic oocyte development in Drosophila melanogaster. J. Insect Physiol. 29: 249–254.

    Google Scholar 

  • Wright, S., 1968. Evolution and the genetics of populations, Vol.1, Genetic and Biometric Foundations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wyatt, G.R. & K.G. Davey, 1996. Cellular and molecular actions of juvenile hormone.II.Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26: 1–155.

    Google Scholar 

  • Zera, A.J. & L.G. Harshman, 2001. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32: 95–126.

    Google Scholar 

  • Zera, A.J. & Y. Huang, 1999. Evolutionary endocrinology of juvenile hormone esterase: functional relationship with wing polymorphism in the cricket, Gryllus firmus. Evolution 53: 837–847.

    Google Scholar 

  • Zhao, Z. & A.J. Zera, 2002. Differential lipid biosynthesis underlies a trade-o.between reproduction and.ight capability in a wing-polymorphic cricket. Proc. Natl. Acad. Sci. USA 99: 16829–16834.

    PubMed  Google Scholar 

  • Zwaan, B., R. Bijlsma & R.F. Hoekstra, 1995. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49: 635–648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatt, T., Kawecki, T.J. Pleiotropic Effects of methoprene-tolerant(Met), a Gene Involved in Juvenile Hormone Metabolism, on Life History Traits in Drosophila melanogaster . Genetica 122, 141–160 (2004). https://doi.org/10.1023/B:GENE.0000041000.22998.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000041000.22998.92

Navigation