Skip to main content
Log in

Molecular Basis of Transferrin Polymorphism in Goldfish (Carassius auratus)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transferrin (TF) polymorphism was investigated in a color variety of goldfish (Carassius auratus), and its molecular basis analyzed. Three TF variants (A1, A2 and B1) were identified from an inbred strain of the goldfish, of which A1 and B1 displayed a large electrophoretic difference on both native and SDS-PAGE gels. The TF cDNAs corresponding to variants A1 and B1 were cloned and sequenced from A1A1, A1B1 and B1B1 individuals, and their deduced amino acid sequences were analyzed. Substantial amino acid variation occurred between variants A1 and B1, with significant differences in peptide length, theoretical molecular weight (Mw) and isoelectric point (pI). No potential glycosylation sites were observed in the two amino acid sequences, which excluded the possibility that carbohydrate difference might cause electrophoretic variation among the TF variants. Further analysis suggested that the distinct electrophoretic mobility of the two variants A1 and B1 by SDS-PAGE resulted from their Mw difference, while the difference by the native PAGE could be explained by their pI variation. Furthermore, genomic DNA fragments containing the transferrin alleles were amplified and subjected to RFLP analysis in A1A1, A1B1 and B1B1 individuals. The data revealed characteristic banding patterns for each TF genotype, and demonstrated that the TF alleles A 1 and B 1 could be used as a co-dominant marker system. The initial work relating to the goldfish TF variants will benefit the understanding of the evolutionary and functional significance of TF polymorphism in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B. F., H. M. Baker, G. E. Norris, D. W. Rice & E. N. Baker, 1989. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8Å resolution.J. Mol. Biol. 209: 711–734.

    Article  PubMed  Google Scholar 

  • Asien, P. & I. Listowsky, 1980.Iron transport and storage proteins. Ann. Rev. Biochem. 49: 357–393.

    Article  PubMed  Google Scholar 

  • Baldwin, G. S., 1993. Comparison of transferrin sequences from different species. Comp. Biochem. Physiol. 106B: 203–218.

    Google Scholar 

  • Brandon, R. B., J. M. Giffard & K. Bell, 1999. Single nucleotide polymorphisms in the equine transferrin gene. Anim. Genet. 30: 439–443.

    Article  PubMed  Google Scholar 

  • Carpenter, M. A. & T. E. Broad, 1993. Polymorphism in the coding sequence of the horse transferrin gene. Genome 37: 157–164.

    Google Scholar 

  • Chung, M. C. & H. A. Mckenzie, 1985. Studies on equine transferrin-I. The isolations and partial characterization of the D and R variants. Comp. Biochem. Physiol. 80B: 287–297.

    Article  Google Scholar 

  • Ferris, S. D. & G. S. Whitt, 1977. The evolution of duplicate gene expression in the carp (Cyprinus carpio). Experientia 33: 13–15.

    Google Scholar 

  • Ford, M. J., 2000. Effects of natural selection on patterns of DNA sequence variation at the transferrin, somatolactin, and p53 genes within and among chinook salmon (Oncorhynchus tshawytscha) populations. Mol. Ecol. 9: 843–855.

    Article  PubMed  Google Scholar 

  • Ford, M. J., 2001. Molecular evolution of transferrin: evidence for positive selection in salmonids. Mol. Biol. Evol. 18: 639–647.

    PubMed  Google Scholar 

  • Frelinger, J. A., 1972. Themaintenance of transferrin polymorphism in pigeons. Proc. Natl. Acad. Sci. USA 69: 326–329.

    PubMed  Google Scholar 

  • Frohman, M. A., M. K. Dush & G. R. Martin, 1988. Rapid ampli-fication of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998–9002.

    PubMed  Google Scholar 

  • Gui, J. F., 1999. Fish developmental genetics and artificial propagation,pp. 41-62 in Fish Genetics and Breeding Engineering, edited by C. Wu & J. F. Gui. Shanghai Scientific and Technical Publishers, Shanghai.

    Google Scholar 

  • Gui, J. F., S. C. Liang & Y. G. Jiang, 1991.Meiotic chromosome behavior in female intersexes of artificial triploid transparentcolored crucian carp. Sci. China 34B: 1341–1353.

    Google Scholar 

  • Gui, J. F., S. C. Liang, J. M. Sun, W. Y. Huang & Y. G. Jiang, 1990. Studies on fish chromosome set manipulation I. Induction of triploid transparent color crucian carp by hydrostatic pressure shock. Aca Hydrobiol. Sin. 14: 336–344.

    Google Scholar 

  • Gui, J. F., J. Jia, S. C. Liang & Y. G. Jiang, 1992. Meiotic chromosome behaviour in male triploid transparent-color crucian carp, Carassius auratusL. J. Fish Biol. 41: 317–326.

    Google Scholar 

  • Hershberger, W. K., 1970. Some physicochemical properties of transferrins in brook trout. Trans. Am. Fish Soc. 1970: 207–218.

    Article  Google Scholar 

  • Kirpichnikov, V. S., 1981. The genetics of nonenzymatic proteins in fishes, pp. 162–172 in Genetic Bases of Fish Selection, edited by V. S. Kirpichnikov. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Kvingedal, A. M., K. A. Rørvik & P. Alestrøm, 1993. Cloning and characterization of Atlantic salmon (Salmo salar) serum transferrin cDNA. Mol. Mar. Biol. Biotechnol. 2: 233–238.

    PubMed  Google Scholar 

  • Laurent, P. & C. Rodellar, 2001. Characterization of a single nucleotide polymorphism in the coding sequence of the bovine transferrin gene. Mutat. Res. Genomics 458: 1–5.

    Article  Google Scholar 

  • Lee, J. Y., T. Tada, I. Hirono & T. Aoki, 1998. Molecular cloning and evolution of transferrin cDNAs in salmonids.Mol.Mar. Biol. Biotechnol. 7: 287–293.

    PubMed  Google Scholar 

  • Maeda, K., H. A. McKenzie & D. C. Shaw, 1984. Comparison of bovine serum transferrin A and D2. I. Amino acid residue differences. Anim. Blood Groups Biochem. Genet. 15: 299–312.

    PubMed  Google Scholar 

  • Mikawa, N., I. Hirono & T. Aoki, 1996. Structure of medaka transferrin gene and its 5′-flanking region. Mol. Mar. Biol. Biotechnol. 5: 225-229.

    Google Scholar 

  • Risinger, C. & D. Larhammar, 1993. Multiple loci for synapse protein SNAP-25 in the tetraploid goldfish. Proc. Natl. Acad. Sci. USA 90: 10598–10602.

    PubMed  Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York, 2nd edn, pp. 463–468.

    Google Scholar 

  • Smithies, O. & O. Hiller, 1959. The genetic control of transferrin in humans. Biochem. J. 72: 121–126.

    PubMed  Google Scholar 

  • Spooner, R. L., R. A. Oliver, N. Richardson, N. Buttress, A. Feinstein, A. H. Maddy & A. Stratil, 1975. Isolation and partial characterization of sheep transferrin. Comp. Biochem. Physiol. 52: 515–522.

    Google Scholar 

  • Stratil, A., P. Bobak, V. Tomasek & M. Valenta, 1983. Transferrins of Barbus Barbus, Barbus Meridionalis Petenyiand their hybrids: genetic polymorphism, heterogenety and partial characterization. Comp. Biochem. Physiol. 76: 845–850.

    Google Scholar 

  • Suzumoto, B. K., C. B. Schreck & J. D. McIntyre, 1977. Relative resistances of three transferrin genotypes of coho salmon (Oncorhynchus kisutch) and their hematological responses to bacterial kidney disease. J. Fish Res. Board Can. 34: 1–8.

    Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882.

    Article  Google Scholar 

  • Welch, S. & L. Langmead, 1990. A comparison of the structure and properties of normal human transferrin and a genetic variant of human transferrin. Int. J. Biochem. 22: 275–282.

    Article  PubMed  Google Scholar 

  • Williams, J., 1968. A comparison of glycopeptides from the ovotransferrin and serum transferrin of the hen. Biochem. J. 108: 57–67.

    PubMed  Google Scholar 

  • Yang, L., S. T. Yang, X. H. Wei & J. F. Gui, 2001. Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem. Genet. 39: 213–225.

    Article  PubMed  Google Scholar 

  • Zhou, L. & J. F. Gui, 2002. Karyotypic diversity in polyploid gibel carp Carassius auratus gibelioBloch. Genetica 115: 223–232.

    Article  PubMed  Google Scholar 

  • Zhou, L., Y. Wang & J. F. Gui, 2000a. Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp, Carassius auratus gibelioBloch, based on detection of RAPD molecular markers. Cytogenet. Cell Genet. 88: 133–139.

    PubMed  Google Scholar 

  • Zhou, L., Y. Wang & J. F. Gui, 2000b. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelioBloch) as revealed by RAPD assays. J. Mol. Evol. 51: 498–506.

    PubMed  Google Scholar 

  • Zhou, L., Y. Wang & J. F. Gui, 2001. Molecular analysis of silver crucian carp (Carassius auratus gibelioBloch) clones by SCAR markers. Aquaculture 201: 219–228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Zhou, L. & Gui, J.F. Molecular Basis of Transferrin Polymorphism in Goldfish (Carassius auratus). Genetica 121, 303–313 (2004). https://doi.org/10.1023/B:GENE.0000039855.55445.67

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000039855.55445.67

Navigation