Skip to main content
Log in

The Physical Gene Hsp70 Map on Polytene Chromosomes of Anopheles darlingi from the Brazilian Amazon

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In situ hybridization was used to determine the physical location of the Hsp70 genes in salivary polytene chromosomes of Anopheles darlingi from Manaus and Macapá, Brazil, and to assess the usefulness of the Hsp70 locus as a genetic marker in A. darlingi populations. In both populations, the double markings corresponding to the Hsp70-12A and Hsp70-14A genes were located on the right arm of chromosome 2. The Hsp70 locus was considered to be an excellent marker for studying chromosomal evolution and relationships among A. darlingi populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atherton, D. & J.G. Gall, 1972. Salivary gland squashes for in situ nucleic acid hybridization studies. Drosophila Inf. Serv. 49: 131–133.

    Google Scholar 

  • Benedict, M.Q., A.F. Cockburn & J.A. Seawright, 1993. The Hsp70 heat-shock gene family of the mosquito Anopheles albimanus. Insect Mol. Biol. 2: 93–102.

    Google Scholar 

  • Bonorino, C.B.C., M. Pereira, C.E.V. Alonso, V.L.S. Valente & E. Abdelhay, 1993. In situ mapping of the hsp70 locus in seven species of the willistoni group of Drosophila. Rev. Brasil. Genet. 16: 561–571.

    Google Scholar 

  • Conn, J.E., M.G. Freitas-Sibajev, S.L.B. Luz & H. Momen, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J. Am. Mosq. Cont. Assoc. 15: 468–474.

    Google Scholar 

  • De Arruda M., M.B. Carvalho, R.S. Nussenzweig, M. Mararic, A.W. Ferreira & A.H. Cochrane, 1986. Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. Am. J. Trop. Med. Hyg. 35: 873–881.

    Google Scholar 

  • Drosopoulou, E., I. Konstantopoulou & Z.G. Scouras, 1996. The heat shock genes in the Drosophila montium subgroup: chromosomal localization and evolutionary implications. Chromosoma 105: 104–110.

    Google Scholar 

  • Faran, M.E. & K.J. Linthicum, 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq. Syst. 13: 1–81.

    Google Scholar 

  • Feder, M.E. & R.A. Krebs, 1998. Natural and genetic engineering of thermotolerance in Drosophila melanogaster. Am. Zool. 38: 503–517.

    Google Scholar 

  • Foote, R.H. & D.R. Cook, 1959. Mosquitoes of Medical Importance. Agricultural Handbook. Vol. 152, U.S. Department of Agriculture, Washington, DC, pp. 1–158.

    Google Scholar 

  • Forattini, O.P., 1962. Entomologia Médica. Vol. 1, Faculdade de Higiene e Saú de Pú blica da USP, Sã o Paulo, 662 p.

    Google Scholar 

  • Freitas-Sibajev, M.G.R, J. Conn, S.E. Mitchell, A.F. Cockburn, J.A. Seawright & H. Momen, 1995. Mitochondrial DNA and morphological analyses of Anopheles darlingi populations from Brazil (Diptera: Culicidae). Mosq. Syst. 27: 78–99.

    Google Scholar 

  • French, W.L., R.H. Baker & J.B. Kitzmiller, 1962. Preparation of mosquito chromosomes. Mosq. News 22: 377–383.

    Google Scholar 

  • Gabai, V.L. & M.Y. Sherman, 2002. Interplay between molecular chaperones and signaling pathways in survival of heat shock. J. Appl. Physiol. 92: 1743–1748.

    Google Scholar 

  • Gall, J.G. & M.L. Pardue, 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63: 378–383.

    Google Scholar 

  • Graziosi, C., R.K. Sakai, P. Romans, L.H. Miller & T.E. Wellems, 1990. Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 27: 905–912.

    Google Scholar 

  • Guedes, A.S., E.M. Amorim & G. Schreiber, 1957. Análise dos cromossomos salivares em anofelinos brasileiros. Rev. Bras. Malar. D. Trop. 9: 247–250.

    Google Scholar 

  • Holt, R.A., G.M. Subramanian, A. Halpern, G.G. Sutton, R. Charlab, D.R. Nusskern, P. Wincker, A.G. Clark, J.M. Ribeiro, R. Wides, S.L. Salzberg, B. Loftus, M. Yandell, W.H. Majoros, D.B. Rusch, Z. Lai, C.L. Kraft, J.F. Abril, V. Anthouard, P. Arensburger, P.W. Atkinson, H. Baden, V. de Berardinis, D. Baldwin, V. Benes, J. Biedler, C. Blass, Bolanos, D. Boscus, M. Barnstead, S. Cai, A. Center, K. Chatuverdi, G.K. Christophides, M.A. Chrystal, M. Clamp, A. Cravchik, V. Curwen, A. Dana, A. Delcher, I. Dew, C.A. Evans, M. Flanigan, A. Grundschober-Freimoser, L. Friedli, Z. Gu, P. Guan, R. Guigo, M.E. Hillenmeyer, S.L. Hladun, J.R. Hogan, Y.S. Hong, J. Hoover, O. Jaillon, Z. Ke, C. Kodira, E. Kokoza, A. Koutsos, I. Letunic, A. Levitsky, Y. Liang, J.J. Lin, N.F. Lobo, J.R. Lopez, J.A. Malek, T.C. McIntosh, S. Meister, J. Miller, C. Mobarry, E. Mongin, S.D. Murphy, D.A. O'Brochta, C. Pfannkoch, R. Qi, M.A. Regier, K. Remington, H. Shao, M.V. Sharakhova, C.D. Sitter, J. Shetty, T.J. Smith, R. Strong, J. Sun, D. Thomasova, L.Q. Ton, P. Topalis, Z. Tu, M.F. Unger, B. Walenz, A. Wang, J. Wang, M. Wang, X. Wang, K.J. Woodford, J.R. Wortman, M. Wu, A. Yao, E.M. Zdobnov, H. Zhang, Q. Zhao, S. Zhao, S.C. Zhu, I. Zhimulev, M. Coluzzi, A. della Torre, C.W. Roth, C. Louis, F. Kalush, R.J. Mural, E.W. Myers, M.D. Adams, H.O. Smith, S. Broder, M.J. Gardner, C.M. Fraser, E. Birney, P. Bork, P.T. Brey, J.C. Venter, J. Weissenbach, F.C. Kafatos, F.H. Collins & S.L. Hoffman, 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–149.

    Google Scholar 

  • Ish-Horowicz, D. & S.M. Pinchin, 1980. Genomic organization of the 87A7 and 87C1 heat-induced loci of Drosophila melanogaster. J. Mol. Biol. 142: 231–245.

    Google Scholar 

  • Konstantopoulou, I., N. Nikolaidis & Z.G. Scouras, 1998. The hsp70 locus of Drosophila auraria (montium subgroup) is single and contains copies in a conserved arrangement. Chromosoma 107: 577–586.

    Google Scholar 

  • Kreutzer, R.D., J.B. Kitzmiller & E. Ferreira, 1972. Inversion polymorphism in the salivary gland chromosomes of Anopheles darlingi Root. Mosq. News 32: 555–565.

    Google Scholar 

  • Kreutzer, R.D., J.B. Kitzmiller & M.G. Rabbani, 1975. The salivary gland chromosomes of Anopheles argyritarsis compared with those of certain other species in the subgenus Nyssorhynchus. Mosq. News 35: 354–365.

    Google Scholar 

  • Kumar, V. & F.H. Collins, 1994. A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol. Biol. 3: 41–47.

    Google Scholar 

  • Leigh-Brown, A.J. & D. Ish-Horowicz, 1981. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature 290: 677–682.

    Google Scholar 

  • Linthicum, K.J., 1988. A revision of the Argyritarsis section of the subgenus Nyssorhynchus of Anopheles (Diptera: Culicidae). Mosq. Syst. 20: 98–271.

    Google Scholar 

  • Manguin, S., R.C. Wilkerson, J.E. Conn, Y. Rubio-Palis, J.A. Danoff-Burg & D.R. Roberts, 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am. J. Trop. Med. Hyg. 60: 364–376.

    Google Scholar 

  • Molto, M.D., L. Pascual, M.J. Martinez-Sebastian & R. de Frutos, 1992. Genetic analysis of heat shock response in three Drosophila species of the obscura group. Genome 35: 870–880.

    Google Scholar 

  • Narang, S.K. & J.A. Seawright, 1993. In situ hybridization mapping of histone genes in Anopheles albimanus. J. Am.Mosq. Control Assoc. 9: 147–149.

    Google Scholar 

  • Peters, F.P.A.M.N., N.H. Lubsen & P.J.A. Sondermeijer, 1980. Rapid sequence divergence in a heat shock locus of Drosophila. Chromosoma 81: 271–280.

    Google Scholar 

  • Rafael, M.S. & W.P. Tadei, 2003. Location of ribosomal genes in the chromosomes of Anopheles darlingi and Anopheles nuneztovari (Diptera, Culicidae) from the Brazilian Amazon. Mem. Inst. Oswaldo Cruz 98(5): 629–635.

    Google Scholar 

  • Rosa-Freitas, M.G., G. Broomfield, A. Priestmann, P. Milligan, H. Momen & D.H. Molyneux, 1992. Studies on cuticular components, isoenzymes and behaviour of 3 populations of Anopheles darlingi from Brazil. J. Am. Mosq. Control Assoc. 8: 357–366.

    Google Scholar 

  • Santos, J.M.M., J.A. Lobo, W.P. Tadei & E.P.B. Contel, 1999. Intrapopulational genetic differentiation in Anopheles (N.) darlingi Root, 1926 (Diptera: Culicidae) in the Amazon region. Genet. Mol. Biol. 22: 325–331.

    Google Scholar 

  • Schreiber, G. & A.S. Guedes, 1959. Estudo comparativo do cromosoma X em algumas espécies de Anopheles do sub-gen. Nyssorhynchus (Dipt. Culic.). Ciê nc. Cult. 11: 128–129.

    Google Scholar 

  • Schreiber, G. & A.S. Guedes, 1960. Perspectivas citoló gicas na sistemática dos anofelinos (S.G. Nyssorhynchus). Rev. Bras. Mal. D. Trop. 12: 355–358.

    Google Scholar 

  • Tadei, W.P., J.M.M. Santos & M.G. Rabbani, 1982. Biologia de anofelinos amazô nicos. V. Polimorfismo cromossô mico de Anopheles darlingi Root (Diptera, Culicidae). Acta Amaz. 12: 353–369.

    Google Scholar 

  • Tadei, W.P., J.M.M. Santos & A.S. Cunha, 1984. Sobre o polimor-fismo cromossô mico de Anopheles darlingi Root (Diptera, Culicidae). Ciê nc Cult. 36: 845.

    Google Scholar 

  • Tadei, W.P., B. Dutary-Thatcher, J.M.M. Santos, V.M. Scarpassa, I.B. Rodrigues & M.S. Rafael, 1998. Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am. J. Trop. Med. Hyg. 59: 325–335.

    Google Scholar 

  • Toaldo, C.B., M. Steindel, M.A. Sousa & C.C. Tavares, 2001. Molecular karyotype and Chromosomal localization of genes encoding ?-tubulin, cysteine proteinase, hsp70 and actin in Trypanosoma rangeli. Mem. Inst. Oswaldo Cruz 96: 113–121.

    Google Scholar 

  • Zacharopoulou, A.M. Frisardi, C. Savakis, A.S. Robinson, P. Tolias, M. Konsolaki, K. Komitopoulou & F.C. Kafatos, 1992. The genome of the Mediterranean fruit fly Ceratitis capitata: localization of molecular markers by in situ hybridization to salivary gland polytene chromosomes.Chromosoma 101: 448–455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafael, M.S., Tadei, W.P. & Hunter, F.F. The Physical Gene Hsp70 Map on Polytene Chromosomes of Anopheles darlingi from the Brazilian Amazon. Genetica 121, 89–94 (2004). https://doi.org/10.1023/B:GENE.0000019959.45267.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000019959.45267.d7

Navigation