Skip to main content
Log in

Characterization of a New HpaI Centromeric Satellite DNA in Salmo salar

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A highly repeated HpaI DNA family was revealed in Atlantic salmon (Salmo salar) and analyzed by Southern blotting and fluorescence in situ hybridization (FISH). In this report, we describe the nucleotide sequence, genomic structure and chromosomal localization of this HpaI repeat. This novel satellite appeared tandemly arrayed and located at centromeric areas of three acrocentric chromosome pairs as evidenced by FISH. The sequence was characterized by a high AT content (63%), a short consensus motif (A/T)(G/C)AAA(T/C) similar to other centromeric satellites motifs, and by short AT enriched stretches. The presence of this sequence in other salmonid species was also tested by Southern blot hybridization and used to analyze its evolution within this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuín, M., C. Clabby, P. Martínez, U. Goswami, F. Flavin, N.P. Wilkins, J.A. Houghton, R. Powell & L. Sánchez, 1996a. A NOR-associated repetitive element present in the genome of two Salmo species (Salmo salar and Salmo trutta). Genome 39: 671–679.

    Google Scholar 

  • Abuín, M., P. Martínez & L. Sánchez, 1996b. Localization of the repetitive telomeric sequence (TTAGGG)n in four salmonid species. Genome 39: 1035–1038.

    Google Scholar 

  • Capriglione, T., A. Morescalchi, E. Olmo, L. Rocco, L. Stingo & S. Manzo, 1994. Satellite DNAs, heterochromatin and sex chromosomes in Chionodraco hamatus (Channichthyidae, Perciformes). Polar Biol. 14: 285–290.

    Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetititve DNA in eukaryotes. Nature 371: 215–220.

    Google Scholar 

  • Cremisi, F., R. Vignali, R. Batistoni & G. Barsacchi, 1988. Heterochromatic DNA in Triturus (Amphibia, Urodela). II. A centromeric satellite DNA. Chromosoma 97: 204–211.

    Google Scholar 

  • Choo, A.K.H., 2000. Centromerization. Trends Cell Biol. 10: 182–188.

    Google Scholar 

  • Choo, A.K.H., 2001. Domain organization at the centromere and neocentromere. Dev. Cell 1(2): 165–177.

    Google Scholar 

  • Denovan, E.M. & J.M. Wright, 1990. A satellite DNA family from pollock (Pollachius virens). Gene 87: 279–283.

    Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Fischer, C., C. Ozouf-Costaz, H. Roest Crollius, C. Dasilva, O. Jaillon, L. Bouneau, C. Bonillo, J. Weissenbach & A. Bernot, 2000. Karyotype and chromosome location of characteristic tandem repeats in the pufferfish Tetraodon nigroviridis. Cytogenet. Cell Genet. 88: 50–55.

    Google Scholar 

  • Garrido-Ramos, M.A., M. Jamilena, R. Lozano, C. Ruiz Rejó n & M. Ruiz Rejó n, 1995. The EcoRI centromeric satellite DNA of the Sparidae family (Pisces: Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs. Cytogenet. Cell Genet. 71: 345–351.

    Google Scholar 

  • Goodier, J.L. & W.S. Davidson, 1998. Characterization of novel minisatellite repeat loci in Atlantic salmon (Salmo salar) and their phylogenetic distribution. J. Mol. Evol. 46: 245–255.

    Google Scholar 

  • Grady, D.L., R.L. Ratliff, D.L. Robinson, E.C. McCanlies, J. Meyne & R.K. Moyzis, 1992. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA 89: 1695–1699.

    Google Scholar 

  • Haaf, T., M. Schmid, C. Steinlein, P.M. Galetti & H. Willard, 1993. Organization and molecular cytogenetics of a satellite DNA family from Hoplias malabaricus (Pisces, Erythrinidae). Chromosome Res. 1: 77–86.

    Google Scholar 

  • Harrington, J.J., G. Van Bokkelen, R.W. Mays, K. Gustashaw & H.F. Willard, 1997. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15: 345–355.

    Google Scholar 

  • Hartley, S.E. & W.S. Davidson, 1994. Distribution of satellite DNA sequences isolated from Arctic char, Salvelinus alpinus, in the genus Salvelinus. Can. J. Fish Aquat. Sci. 51(Suppl. 1): 277–283.

    Google Scholar 

  • Hartley, S.E. & M.T. Horne 1984. Chromosome polymorphism and constitutive heterochromatin in Atlantic salmon, Salmo salar. Chromosoma 89: 377–380.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Google Scholar 

  • Koehler, M.R., T. Haaf, M. Guttenbach, M. Schartl & M. Schmid, 1997. Cytogenetics of the genus Leporinus (Pisces, Anostomidae). II. Molecular cytogenetics, organization and evolutionary conservation of a chromosome-specific satellite DNA from Leporinus obtusidens. Chromosom Res. 5: 325–3331.

    Google Scholar 

  • Kumar, S., K. Tamura, I.B. Jakobsen & M. Nei, 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17(2): 1244–1245.

    Google Scholar 

  • Li, W.H. & D. Graur, 1991. Fundamentals of molecular evolution. Sinauer Associates Inc., Sunderland, MA, USA.

    Google Scholar 

  • Martínez, P., A. Viñas, C. Bouza, J. Castro & L. Sánchez, 1993. Quantitative analysis of the variability of NOR region in Salmo trutta. Genome 36: 1119–1123.

    Google Scholar 

  • Morán, P., K.M. Reed, J. Pérez, T.H. Oakley, R.B. Phillips, E. García-Vázquez, A. Pendás, 1997. Physical localization and characterization of the BglI element in the genomes of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta L.). Gene 194: 9–18.

    Google Scholar 

  • Murata, S., N. Takasaki, M. Saitoh, H. Tachida & N. Okada, 1996. Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the Pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo). Genetics 142: 915–926.

    Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin.

    Google Scholar 

  • Ohno, S., 1972. So much 'junk' in our genomes. Brookhaven Symp. Biol. 23: 366–370.

    Google Scholar 

  • Oliveira, C. & J.M. Wright, 1998. Molecular cytogenetic analysis of heterochromatin in the chromosomes of tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosome Res. 6: 205–211.

    Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Google Scholar 

  • Pendás, A.M., P. Morán & E. García-Vázquez, 1993. Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet. Cell Genet. 63: 128–130.

    Google Scholar 

  • Pérez, J., P. Morán & E. García-Vázquez, 2000. Isolation, characterization and chromosomal location of the tRNA(Met) genes in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Genome 43(1): 185–190.

    Google Scholar 

  • Phillips, R.B. & K.M. Reed, 1996. Application of fluorescence in situ hybridization (FISH) techniques to fish genetics: a review. Aquaculture 140: 197–216.

    Google Scholar 

  • Reed, K.M. & R.B. Phillips, 1995. Molecular characterization and cytogenetic analysis of highly repeated DNAs of lake trout, Salvelinus namaycush. Chromosoma 104: 242–251.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour.

    Google Scholar 

  • Shepard, W., W.B.T. Cruse, R. Fourme, E. de la Fortelle & T. Prangé, 1998. A zipper-like duplex in DNA: the crystal structure of d(GCGAAAGCT) at 2.1 Å resolution. Structure 6: 849–861.

    Google Scholar 

  • Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 11(22): 4673–4680.

    Google Scholar 

  • Vissel, B., A. Nagy & K.H.A. Choo, 1992. A satellite III sequence shared by human chromosomes 13, 14 and 21 that is contiguous with alpha satellite DNA. Cytogenet. Cell Genet. 61: 81–86.

    Google Scholar 

  • Vogt, P., 1992. Code domains in tandem repeat DNA sequences structures. Chromosoma 101(10): 585–589.

    Google Scholar 

  • Wong, A.K.C. & J.B. Rattner, 1988. Sequence organization and cytological localization of the minor satellite of mouse. Nucl. Acids Res. 16: 11645–11661.

    Google Scholar 

  • Wright, J.M., 1989. Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum). Nucl. Acids Res. 17: 5071–5079.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viñas, A., Abuín, M., Pardo, B.G. et al. Characterization of a New HpaI Centromeric Satellite DNA in Salmo salar . Genetica 121, 81–87 (2004). https://doi.org/10.1023/B:GENE.0000019927.30049.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000019927.30049.9c

Navigation