Skip to main content
Log in

Numerical simulations of the growth and deflection of a stress-corrosion notch on the interface between two reactive solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A front-tracking finite element method is used to compute the evolution of a crack-like defect that propagates along a bi-material interface by stress driven corrosion. Depending on material properties, loading, and temperature, simulations predict five possible behaviors for the flaw: (a) The notch may blunt, so that a fatigue threshold exists for the composite; (b) The flaw may branch out of the interface, and thereafter propagate as a stable notch; (c) The notch may branch out of the interface, and then progressively sharpen at its tip, with both the notch tip curvature and stress approaching unbounded values; (d) The flaw may propagate as a stable notch parallel to the interface; (e) The notch may propagate parallel to the interface, but with the tip curvature and stress progressively increasing without limit. The range of material parameters and loading conditions that leads to each type of behavior is calculated. For conditions where steady-state interfacial notch growth occurs, the tip velocity is computed as function of material and loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bando, Y., Setsuro, I. and Tomozawa, M. (1984). Direct observation of crack tip geometry of SiO2 glass by high resolution electron microscopy. J. Am. Ceram. Soc. 67, C36–C37.

    Google Scholar 

  • Berenstein, N. and Hess, D.W. (2003). Lattice trapping barriers to brittle fracture. Phys. Rev. Lett. 91, 025501-1-025501-4.

    Article  ADS  Google Scholar 

  • Charles, R.J. and Hillig, W.B. (1961). The Kinetics of Glass Failure by Stress Corrosion in Symposium on Mechanical Strength of Glass and Ways of Improving it, Union Scientifique Continentale du Verre Charleroi Belgium 511–527.

  • Choi, S.R., Ritter, J.E. and Jakus, K. (1990). Failure of glass with subthresho1d flaws. J. Am. Ceram. Soc. 73, 268–274.

    Google Scholar 

  • Chuang, T.-J. and Fuller, E.R. (1992). Extended Charles-Hillig Theroy for Stress Corrosion Notching of Glass. J. Am. Ceram. Soc 75(3), 540–545.

    Article  Google Scholar 

  • Cook, R.F. and Liniger, E.G. (1993). Kinetics of Indentation Cracking in Glass. J. Amer. Cer. Soc. 76, 1096–1106.

    Google Scholar 

  • Cook, R.F. (1999). Environmentally controlled non-equilibrium crack propagation in ceramics. Mat. Sci and Engng. A260, 29–40.

    Google Scholar 

  • Curtin, W.A. (1990). On lattice trapping of cracks. J. Mater. Res. 5, 1549.

    ADS  Google Scholar 

  • Doremus, R.H. (1980). Modifications of the Charles-Hillig theory for static fatigue of glass. Eng. Fract. Mech. 13, 945–953.

    Google Scholar 

  • Fuller, E.R., Lawn, B.R. and Cook, R.F. (1983). Theory of fatigue for brittle flaws originating from stress concentrations. J. Am. Ceram. Soc. 66, 314–321.

    Google Scholar 

  • Freiman, S.W., White, G.S. and Fuller, E.R. Jr. (1985). Environmentally Enhanced Notch Growth in Soda-Lime Glass. J. Am. Ceram. Soc. 68, 108–112.

    Google Scholar 

  • Hillig, W.B. and Charles, R.J. (1965). Surfaces, Stress-Dependent surface Reactions and Strength in High Strength Materials, V.F. Zackaray. Wiley & Sons, New York, 682–705.

    Google Scholar 

  • Michalske, T.A. (1983). The Stress Corrosion Limit: Its Measurement and Implications in Fracture Mechanics of Ceramics, Vol. 5, ed. R.C. Bradt, A.G. Evans, D.P.H. Hasselman and F.F. Lange, Plenum Press, New York, 277–289.

    Google Scholar 

  • Lawn, B.R. (1975). An atomistic model of kinetic crack growth in brittle solids. J. Mat. Sci. 10, 469–480.

    Google Scholar 

  • Lawn, B.R., Jakus, R. and Gonzalez, A.C. (1985). Sharp vs blunt crack hypotheses in the strength of glass: a critical study using indentation flaws. J. Am. Ceram. Soc. 68, 25–34.

    Google Scholar 

  • Michalske, T.A. and Freiman, S.W. (1982). A Molecular interpretation of stress corrosion in silica. Nature 295, 511–512.

    Article  Google Scholar 

  • Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O.C. (1987). Adaptive Remeshing for Compressible Flow Computations. J. Comp. Phys. 72, 449–466.

    ADS  Google Scholar 

  • Tang, Z., Bower, A.F. and Chuang, T.-J. (2000). Nwnerical simulations of subcritical Notch growth by stress corrosion in an elastic solid, Multi-scale Deformation and Fracture in Materials and Structures, ed. T.-J. Chuang and J. Rudnicki, Kluwer, pp. 331–348.

  • Thomson, R., Hsieh, C. and Rana, V. (1971). Lattice Trapping of Fracture Cracks. J. Appl. Phys. 42, 3154–3160.

    Article  Google Scholar 

  • Wiederhorn, S.M. (1975). Notch Growth as an Interpretation of Static Fatigue. J. Non-cryst. Solids 19(1), 169–181.

    Google Scholar 

  • Wiederhorn, S.M., Evans, A.G., Fuller, E.R. and Johnson, H. (1974). Application of Fracture Mechanics to Spaceshuttle Windows. J. Am. Ceram. Soc. 57, 319–323.

    Google Scholar 

  • Wiederhorn, S.M., Dretzke, A. and Rodeal, J. (2003). Near the static fatigue limit in glass. Int. J. Fract. 121, 1–7.

    Article  Google Scholar 

  • Wilkins, B.J.S. and Dutton, R. (1976). Static Fatigue Limit with Particular Reference to Glass. J. Am. Ceram. Soc. 59(3-4), 108–112.

    Google Scholar 

  • Zienkiewicz, O.C. and Zhu, J.Z. (1987). A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int. J. Numer. Meth. Engng. 24, 337–357.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Bower, A. & Chuang, TJ. Numerical simulations of the growth and deflection of a stress-corrosion notch on the interface between two reactive solids. International Journal of Fracture 127, 1–20 (2004). https://doi.org/10.1023/B:FRAC.0000035070.99093.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000035070.99093.77

Navigation