Advertisement

Foundations of Science

, Volume 9, Issue 1, pp 1–24 | Cite as

Three's a Crowd: On Causes, Entropy and Physical Eschatology

  • Milan M. Ćirković
  • Vesna Milošević-Zdjelar
Article

Abstract

Recent discussions of theorigins of the thermodynamical temporal asymmetry (“thearrow of time”) by Huw Price and others arecritically assessed. This serves as amotivation for consideration of relationshipbetween thermodynamical and cosmologicalcauses. Although the project of clarificationof the thermodynamical explanandum is certainlywelcome, Price excludes another interestingoption, at least as viable as the sort ofAcausal-Particular approach he favors, andarguably more in the spirit of Boltzmannhimself. Thus, the competition of explanatoryprojects includes three horses, not two. Inaddition, it is the Acausal-Particular approachthat could benefit enormously from dissociationfrom fanciful ideas of low-entropy futureboundary conditions entertained by Price. Novelrevolutionary developments in observationalcosmology, as well as in the nascentastrophysical discipline of physicaleschatology, have obliterated such hypotheses.Also, the Acausal-Anthropic approach wepropose, offers another clear instance ofdisteleological nature of the anthropicprinciple.

anthropic principle cosmology entropy philosophy of time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adams, F.C. and G. Laughlin: 1997, A Dying Universe: The Long-Term Fate and Evolution of Astrophysical Objects. Rev. Mod. Phys.69: 337.Google Scholar
  2. Albrecht, A.: 1994, The Theory of Everything vs the Theory of Anything. In F. Occhionero (ed.), The Birth of the Universe and Fundamental Physics.Springer Verlag, preprint gr-qc/9408023.Google Scholar
  3. Barrow, J.D. and M. Dabrowski: 1995, Oscillating Universes. Mon. Not. R. Astr. Soc.275: 850.Google Scholar
  4. Barrow, J.D. and F.J. Tipler: 1986, The Anthropic Cosmological Principle. New York: Oxford University Press.Google Scholar
  5. Balashov, Yu: 1990, Multifaceted Anthropic Principle. Comments Astrophys.15: 19.Google Scholar
  6. Balashov, Yu. V.: 1991, Resource Letter AP-1: The Anthropic Principle. American Journal of Physics59: 1069–1076.Google Scholar
  7. Bartlett, J.G. and A. Blanchard: 1996, The Significance of the Cosmic Virial Theorem. Astron. Astrophys.307: 1.Google Scholar
  8. Bertschinger, E.: 1998, Simulations of Structure Formation in the Universe. Ann. Rev. Astron. Astrophys.36: 599.Google Scholar
  9. Boltzmann, L.: 1964, Lectures on Gas Theory, transl. by Stephen G. Brush. London: Cambridge University Press.Google Scholar
  10. Bostrom, N.: 2002, Anthropic Bias: Observation Selection Effects in Science and Philosophy. New York: Routledge.Google Scholar
  11. Bostrom, N.: 2003, Astronomical Waste: The Opportunity Cost of Delayed Technological Development. Utilitas, forthcoming.Google Scholar
  12. Brawer, R. and A.P. Lightman: 1990, Origins: The Lives and Worlds of Modern Cosmologists. Cambridge: Harvard University Press.Google Scholar
  13. Carroll, S.M., W.H. Press and E.L. Turner: 1992, The Cosmological Constant. Ann. Rev. Astron. Astrophys.30: 499.Google Scholar
  14. Coles, P. and G. Ellis: 1994, The Case for an Open Universe. Nature370: 609.Google Scholar
  15. Culverwell, E.P.: 1890, Note on Boltzmann's Kinetic Theory of Gases, and on Sir W. Thomson's Address to Section A, British Association. Philosophical Magazine30: 95.Google Scholar
  16. Ćirković, M.M.: 2002, Cosmological Forecast and its Practical Significance. Journal of Evolution and Technology(online journal at http://www.jetpress.org) 12.Google Scholar
  17. Ćirković, M.M.: 2003, The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann-Schuetz Argument. Foundations of Physics33: 447–470.Google Scholar
  18. Ćirković, M.M. and N. Bostrom: 2000, Cosmological Constant and the Final Anthropic Hypothesis. Astrophys. Space Sci.274: 675.Google Scholar
  19. Deutsch, D.: 1996, Comment on “ManyMinds Interpretations of QuantumMechanics” by Michael Lockwood. British Journal for the Philosophy of Science47: 222.Google Scholar
  20. Dyson, F.: 1979, Time without End: Physics and Biology in an Open Universe. Rev. Mod. Phys.51: 447.Google Scholar
  21. Earman, J.: 1995, Recent Work on Time Travel. In Steven Savitt (ed.), Time's Arrow Today. Cambridge: Cambridge University Press, p. 268.Google Scholar
  22. Efstathiou, G.: 1995, An Anthropic Argument for a Cosmological Constant.Mon. Not. R. Astr. Soc.274: L73.Google Scholar
  23. Fan, Bahcall and R. Cen: 1997, Determining the Amplitude of Mass Fluctuations in the Universe. Astrophys. J.490: L123.Google Scholar
  24. Feynman, R.P.: 1965, The Character of Physical Law. London: Cox and Wyman Ltd.Google Scholar
  25. Frautschi, S.: 1982, Entropy in an Expanding Universe. Science217: 593.Google Scholar
  26. Gold, T.: 1962, The Arrow of Time. Am. J. Phys.30: 403.Google Scholar
  27. Hogan, C.J.: 2000, Why the Universe is Just So? Rev. Mod. Phys.72: 1149–1161.Google Scholar
  28. Kent, A.: 1998, Causality in Time-Neutral Cosmologies. Phys. Rev. D59: 043505.Google Scholar
  29. Klee, R.: 2002, The Revenge of Pythagoras: How a Mathematical Sharp Practice Undermines the Contemporary Design Argument in Astrophysical Cosmology. Brit. J. Phil. Sci.53: 331–354.Google Scholar
  30. Kochanek, C.S.: 1995, Gravitational Lensing Limits on Cold Dark Matter and Its Variants. Astrophys. J.453: 545.Google Scholar
  31. Krauss, L.M. and M.S. Turner: 1999, Geometry and Destiny. Gen. Rel. Grav.31: 1453.Google Scholar
  32. Kutrovátz, G.: 2001, Heat Death in Ancient and Modern Thermodynamics. Open Sys. & Information Dyn.8: 349.Google Scholar
  33. Layzer, D.: 1976, The Arrow of Time. Astrophys. J.206: 559.Google Scholar
  34. Lieb, E. and J. Yngvason: 1999, The Physics and Mathematics of the Second Law of Thermodynamics. Phys. Rep.310: 1.Google Scholar
  35. Linde, A.D.: 1990, Inflation and Quantum Cosmology. San Diego: Academic Press.Google Scholar
  36. Lineweaver, C.H.: 1998, The Cosmic Microwave Background and Observational Convergence in the Omega_m-Omega_Lambda Plane. Astrophys. J.505: L69.Google Scholar
  37. Martel, H., P.R. Shapiro and S. Weinberg: 1998, Likely Values of the Cosmological Constant. Astrophys. J.492: 29.Google Scholar
  38. Oberhummer, H., A. Csoto and H. Schlattl: 2000, Stellar Production Rates of Carbon and its Abundance in the Universe. Science289: 88–90.Google Scholar
  39. Oppy, G.: 2001, Physical Eschatology. Philo4(2).Google Scholar
  40. Perlmutter, S. et al.: 1998, Discovery of a Supernova Explosion at Half the Age of the Universe. Nature391: 51.Google Scholar
  41. Perlmutter, S. et al. 1999, Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J.517: 565.Google Scholar
  42. Price, H.: 1996, Time's Arrow and Archimedes' Point. Oxford: Oxford University Press.Google Scholar
  43. Price, H.: 2002a, Boltzmann's Time Bomb. Brit. J. Phil. Sci.53: 83–119.Google Scholar
  44. Price, H.: 2002b, Burbury's Last Case: The Mystery of the Entropic Arrow. In Craig Callender (ed.), Time, Reality and Experience.Cambridge: Cambridge University Press, forthcoming.Google Scholar
  45. Riess, A.G. et al.: 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J.116: 1009.Google Scholar
  46. Roos, M. and S.M. Harun-or-Rashid: 1998, The Case for a Cosmological Constant. Astron. Astrophys.329: L17.Google Scholar
  47. Tegmark, M.: 1998a, Many Worlds or Many Words? Fortschritte der Physik46: 855.Google Scholar
  48. Tegmark, M.: 1998b, Is “The Theory of Everything” Merely the Ultimate Ensemble Theory? Ann. Phys.270: 1.Google Scholar
  49. Tipler, F.J.: 1994, The Physics of Immortality. New York: Doubleday.Google Scholar
  50. Uffink, J. and H. Brown: 2001, The Origins of Time-Asymmetry in Thermody-namics: The Minus First Law. Studies in History and Philosophy of ModernPhysics 32B: 525.Google Scholar
  51. Zeh, H.D.: 1992, The Physical Basis of the Direction of Time. New York: Springer Verlag.Google Scholar
  52. Zehavi, I. and A. Dekel: 1999, Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae. Nature 401: 252.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Milan M. Ćirković
    • 1
  • Vesna Milošević-Zdjelar
    • 2
  1. 1.Astronomical Observatory BelgradeBelgrade, Serbia and Montengro
  2. 2.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada

Personalised recommendations