Skip to main content

Primary structures and gene organizations of two types of Wap65 from the pufferfish Takifugu rubripes

Abstract

We isolated two types of cDNA clone encoding hemopexin-like protein, fWap65-1 and fWap65-2, from the pufferfish Takifugu rubripes. The deduced amino acid sequence of fWap65-1 showed 66–67% identity with those of goldfish and carp Wap65s, whereas the sequence of fWap65-2 did 44–46% identity. Both fWap65s showed 32–38% amino acid identity with mammalian hemopexins, in which fWap65-2 was more related than fWap65-1. While hemopexins contain two conserved histidine residues in their heme binding pockets, these residues were also conserved in fWap65-2, but not in fWap65-1. The exon-intron organization was highly conserved between fWap65s and human hemopexin gene, suggesting that Wap65s are fish orthologs of human hemopexin. The 5′-flanking regions of both fWap65s contained various putative transcriptional elements, including Cdx1, GATA-1, C/EBPβ and LyF-1. The expression patterns of fWap65s in various tissues of Fugu were examined by RT-PCR, demonstrating the dominant expression of both genes in liver followed by brain. In addition, the small quantities of fWap65-1 transcripts were also detected in eye, gill and gonad, whereas the transcripts of fWap65-2 could not be observed except for liver and brain. Although the average values for mRNA levels of both fWap65s in warm-acclimated fish tended to be higher than those of cold-acclimated fish, their differences were not statistically significant.

Abbreviations: DTT - dithiothreitol; LPS - lipopolysaccharide; RACE - rapid amplification of cDNA ends; SDS - sodium dodecyl sulfate; Wap65 - warm temperature acclimation-related 65 kDa protein.

This is a preview of subscription content, access via your institution.

References

  • Altruda, F., Poli, V., Restagno, G., Argos, P., Cortese, R. and Silengo, L. 1985. The primary structure of human hemopexin deduced from cDNA sequence: evidence for internal, repeating homology. Nucleic Acids Res. 13: 3841-3859.

    PubMed  CAS  Google Scholar 

  • Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., Gelpke, M.D., Roach, J., Oh, T., Ho, I.Y., Wong, M., Detter, C., Verhoef, F., Predki, P., Tay, A., Lucas, S., Richardson, P., Smith, S.F., Clark, M.S., Edwards, Y.J., Doggett, N., Zharkikh, A., Tavtigian, S.V., Pruss, D., Barnstead, M., Evans, C., Baden, H., Powell, J., Glusman, G., Rowen, L., Hood, L., Tan, Y.H., Elgar, G., Hawkins, T., Venkatesh, B., Rokhsar, D. and Brenner, S. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297: 1301-1310.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S., Elgar, G., Sandford, R., Macrae, A., Venkatesh, B. and Aparicio, S. 1993. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366: 265-268.

    Article  PubMed  CAS  Google Scholar 

  • De Monti, M., Miot, S., Le Goff, P. and Duval, J. 1998. Characterisation d'une hemopexine serique de truite par utilisation d'une proteine recombinante. C. R. Acad. Sci. III 321: 299-304.

    CAS  Google Scholar 

  • Diaz del Pozo, E., Beverley, P.C. and Timon, M. 2000. Genomic structure and sequence of the leukocyte common antigen (CD45) from the pufferfish Fugu rubripes and comparison with its mammalian homologue. Immunogenetics 51: 838-846.

    Article  PubMed  CAS  Google Scholar 

  • Elgar, G., Sandford, R., Aparicio, S., Macrae, A., Venkatesh, B. and Brenner, S. 1996. Small is beautiful: comparative genomics with the pufferfish (Fugu rubripes). Trends Genet. 12: 145-150.

    Article  PubMed  CAS  Google Scholar 

  • Ekker, M., Akimenko, M.A., Allende, M.L., Smith, R., Drouin, G., Langille, R.M., Weinberg, E.S. and Westerfiled, M. 1997. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol. Biol. Evol. 14: 1008-1022.

    PubMed  CAS  Google Scholar 

  • Gellner, K. and Brenner, S. 1999. Analysis of 148 kb of genomic DNA around the wnt1 locus of Fugu rubripes. Genome Res. 9: 251-258.

    PubMed  CAS  Google Scholar 

  • Gracey, A.Y., Troll, J.V. and Somero, G.N. 2001. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc. Natl. Acad. Sci. USA 98: 1993-1998.

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J.R. and Prosser, C.L. 1974. Molecular mechanism of temperature compensation in poikilotherms. Physiol. Rev. 54: 620-677.

    PubMed  CAS  Google Scholar 

  • Hirayama, M. Kobiyama, A. Kinoshita, S. and Watabe, S. 2004. The occurrence of two types of hemopexin-like protein in medaka and differences in their affinity to heme. J. Exp. Biol. 207: 1387-1398.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, D., Toramoto, T., Ochiai, Y., Suetake, H., Suzuki, Y., Minoshima, S., Shimizu, N. and Watabe, S. 2003. Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes)on genomic sequences and tissue distribution of their transcripts. Mol. Biol. Rep. 30: 83-90.

    Article  PubMed  CAS  Google Scholar 

  • Imai, J., Hirayama, Y., Kikuchi, K., Kakinuma, M. and Watabe, S. 1997. cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation. J. Exp. Biol. 200: 27-34.

    PubMed  CAS  Google Scholar 

  • Immenschuh, S., Nagae, Y., Satoh, H., Baumann, H. and Muller-Eberhard, U. 1994. The rat and human hemopexin genes contain an identical interleukin-6 response element that is not a target of CAAT enhancer-binding protein isoforms. J. Biol. Chem. 269: 12654-12661.

    PubMed  CAS  Google Scholar 

  • Kikuchi, K., Watabe, S., Suzuki, Y., Aida, K. and Nakajima, H. 1993. The 65-kDa cytosolic protein associated with warm tem-perature acclimation in goldfish, Carassius auratus. J. Comp. Physiol. 20 B163: 349-354.

    Google Scholar 

  • Kikuchi, K., Yamashita, M., Watabe, S. and Aida, K. 1995. The warm temperature acclimation-related 65-kDa protein, Wap65, in goldfish and its gene expression. J. Biol. Chem. 270: 17087-17092.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, K., Watabe, S. and Aida, K. 1997. The Wap65 gene expres-sion of goldfish (Carassius auratus) in association with warm water temperature as well as bacterial lipopolysaccharide (LPS). Fish Physiol. Biochem. 17: 423-432.

    Article  CAS  Google Scholar 

  • Kikuchi, K., Watabe, S. and Aida, K. 1998. Isolation of a 65-kDa protein from white muscle of warm temperature-acclimated goldfish (Carassius auratus). Comp. Biochem. Physiol. B 120: 385-391.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, S., Itoi, S. and Watabe, S. 2001. cDNA clon-ing and characterization of the warm-temperature-acclimation-associated protein Wap65 from carp, Cyprinus carpio. Fish Physiol. Biochem. 24: 125-134.

    Article  CAS  Google Scholar 

  • Madore, N., Camborieux, L., Bertrand, N. and Swerts, J.P. 1999. Regulation of hemopexin synthesis in degenerating and regenerating rat sciatic nerve. J. Neurochem. 72: 708-715.

    Article  PubMed  CAS  Google Scholar 

  • Miot, S., Duval, J. and Le Goff, P. 1996. Molecular cloning of a hemopexin-like cDNA from rainbow trout liver. DNA Seq. 6: 311-318.

    PubMed  CAS  Google Scholar 

  • Morgan, W.T., Muster, P., Tatum, F.M., McConnell, J., Conway, T.P., Hensley, P. and Smith, A. 1988. Use of hemopexin domains and monoclonal antibodies to hemopexin to probe the molecu-lar determinants of hemopexin-mediated heme transport. J. Biol. Chem. 263: 8220-8225

    PubMed  CAS  Google Scholar 

  • Morgan, W.T., Muster, P., Tatum, F.M., Kao, S.M., Alam, J. and Smith, A. 1993. Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J. Biol. Chem. 268: 6256-6262.

    PubMed  CAS  Google Scholar 

  • Mori, H., Miyazaki, Y., Morita, T., Nitta, H. and Mishima, M. 1994. Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Mol. Brain Res. 27: 221-231.

    Article  PubMed  CAS  Google Scholar 

  • Nikkila, H., Gitlin, J.D. and Muller-Eberhard, U. 1991. Rat hemopexin. Molecular cloning, primary structural characterization, and analysis of gene expression. Biochemistry 30: 823-829.

    Article  PubMed  CAS  Google Scholar 

  • Paoli, M., Anderson, B.F., Baker, H.M., Morgan, W.T., Smith, A. and Baker, E.N. 1999. Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two â-propeller domains. Nature Struct. Biol. 6: 926-931.

    Article  PubMed  CAS  Google Scholar 

  • Poli, V. and Cortese, R. 1989. Interleukin 6 induces a liver-specific nuclear protein that binds to the promoter of acute-</del>phase genes. Proc. Natl. Acad. Sci. USA 86: 8202-8206.

    Article  PubMed  CAS  Google Scholar 

  • Slavov, D., Clark, M. and Gardiner, K. 2000. Comparative analysis of the RED1 and RED2 A-to-I RNA editing genes from mammals, pufferfish and zebrafish. Gene 250: 41-51.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. and Miller, W. 2000. PipMaker-a web server for aligning two genomic DNA sequences. Genome Res. 10: 577-586.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian,V., Meyer, B.I. and Gruss, P. 1995. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83: 641-653.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Kurokawa, T., Hashimoto, H. and Sugiyama, M. 2002. cDNA sequence and tissue expression of Fugu rubripes prion protein-like: a candidate for the teleost orthologue of tetrapod PrPs. Biochem. Biophys. Res. Commun. 294: 912-917.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, N., Takahashi, Y. and Putnam, F.W. 1985. Complete amino acid sequence of human hemopexin, the heme-binding protein of serum. Proc. Natl. Acad. Sci. USA 82: 73-77.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.

    PubMed  CAS  Google Scholar 

  • Tolosano, E., Hirsch, E., Patrucco, E., Camaschella, C., Navone, R., Silengo, L. and Altruda, F. 1999. Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94: 3906-3914.

    PubMed  CAS  Google Scholar 

  • Tolosano, E. and Altruda, F. 2002. Hemopexin: structure, function, and regulation. DNA Cell Biol. 21: 297-306.

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh, B., Gilligan, P. and Brenner, S. 2000. Fugu: a compact vertebrate reference genome. FEBS Lett. 476: 3-7.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, S., Kikuchi, K. and Aida, K. 1993. Cold-and warm-temperature acclimation induces specific cytosolic proteins in goldfish and carp. Nippon Suisan Gakkaishi 59: 151-156.

    CAS  Google Scholar 

  • Watabe, S. 2002. Temperature plasticity of contractile proteins in fish muscle. J. Exp. Biol. 205: 2231-2236.

    PubMed  CAS  Google Scholar 

  • Wittbrodt, J., Meyer, A. and Schartl, M. 1998. More genes in fish? BioEssays. 20: 511-515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirayama, M., Nakaniwa, M., Ikeda, D. et al. Primary structures and gene organizations of two types of Wap65 from the pufferfish Takifugu rubripes . Fish Physiology and Biochemistry 29, 211–224 (2003). https://doi.org/10.1023/B:FISH.0000045723.52428.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000045723.52428.5e

  • cDNA cloning
  • Fugu
  • genome
  • hemopexin
  • temperature acclimation
  • transcriptional element
  • warm temperature acclimation-related 65 kDa protein