Skip to main content

Petroleum – induced free radical toxicity in African catfish (Clarias gariepinus)

Abstract

The reaction products derived from lipid peroxidation, as well as superoxide dismutase and catalase enzyme activities were measured in tissues of catfish (Clarias gariepinus) exposed to oil in water dispersions of 0%, 0.5%, 1.0% and 1.5% for 0, 7, 14, 21 and 28 days. Lipid peroxidation significantly (P<0.05) increased in various tissues relative to control values after 14, 21, and 28 days of exposure to 1.0% and 1.5% oil in water dispersions. Catalase and superoxide dismutase activities decreased after 7 days of exposure but significantly (P<0.05) increased after 14, 21 and 28 days of exposure to 1.0% and 1.5% oil in water dispersions. The elevated levels of lipid peroxidation, superoxide dismutase and catalase activities in all tissues examined in C. gariepinus could be a reflection of oxidative stress on the fish. These observations seem to implicate that petroleum hydrocarbons act as a mediator in free radical generation. The increase in catalase and superoxide dismutase activities in these tissues could be an adaptive response to protect the fish from petroleum-hydrocarbon-induced free radical toxicity.

This is a preview of subscription content, access via your institution.

References

  • Achuba, F.I. 2002. Superoxide dismutase and lipid peroxidation levels in fish from the Ethiope River in southern Nigeria. Bull. Environ. Contam. Toxicol. 69(6): 892–899.

    Article  PubMed  CAS  Google Scholar 

  • Aebi, H. 1974. Catalase. In: Methods of enzymatic analysis. Bergmeyer, H.U (Ed) Academic Press, New York. pp. 673–684.

    Google Scholar 

  • Aitken, R.M., Palerson, M., Fisher, H., Buckingham, D.W. and Van Duin, M. 1995. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell. Sci. 108: 2017–2025.

    PubMed  CAS  Google Scholar 

  • Aksnes, A. and Njaa, R.L. 1981. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 69B: 893–896.

    CAS  Google Scholar 

  • Anoliefo, G.O. 1991. Forcados blend oil effect on respiratory metabolism, mineral element composition and growth of Citrulus vulgaris Schrad. PhD. Thesis University of Benin, Nigeria. 293 p.

  • Beers, R.F. and Sizer, I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133–140.

    PubMed  CAS  Google Scholar 

  • Cohen, G., Dembiec, D. and Marcus, J. 1970 Measurement of catalase activity in tissue extracts. Analyt. Biochem. 34: 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Collier, T.K. and Varanasi, U. 1991. Hepatic activities of xenobiotic metabolising enzymes and biliary levels of xenobiotics in English sole (Parophyrs vetulus) exposed to environmental contaminants. Archives Environ. Contam. Toxicol. 20: 452–473.

    Google Scholar 

  • Coudray, C., Boucher, R., Pucheu, S., Leiris, L.D. and Favier, A. 1995. Relationship between severity of ischemia and oxidant scavenger enzyme activities in isolated rat heart. Int. J. Biochem. Cell Biol. 27: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Crapo, J.D, Mc Cord, J.M. and Fridovich, I. 1978. Preparation and assay of superoxide dismutases. Meth. Enzyme 53: 382–393.

    Article  CAS  Google Scholar 

  • Egborge, A.B.M. 1994. Water pollution in Nigeria: Biodiversity and chemistry of Warri River. Ben Miller publication, Warri.

    Google Scholar 

  • Ernster, L. 1993. Lipid peroxidation in biological membrane: mechanisms and implications. In: active oxygen, lipid perioxides and antioxidant. Yagi K (Ed) CRC Press, Boca Raton. Pp. 1–38

    Google Scholar 

  • Fletcher G.L., Kicheniuk, J.W. and Williams, W.P. 1981. Effects of oiled sediments on mortality, feeding and growth of Winter flounder (Pseudopleuronectes americanus) Mar. Biol. Prog. ser 4: 91–96.

    Google Scholar 

  • Fletcher, G.L, King, M.J., Kicheniuk, J.W. and Addison, R.F. 1982. Liver hypertrophy in Winter flounder following exposure to experimentally oiled sediment. Comp. Biochem C. Comp. Pharmacol. 75C: 475–462.

    Google Scholar 

  • Frei, B. 1994. Reactive oxygen species and antioxidant vitamins: mechanism of action. Am. J. Med. (suppl 3A) 3A-55-3A-135.

  • Fridovich, I. 1974. Superoxide dismutase. Adv. Enzymol. 41: 35–97.

    PubMed  CAS  Google Scholar 

  • Fridovich, I. 1986. Biological effects of superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, J.M.C. and Wilkins S. 1982. Copper dependent hydroxyl radical damage to ascorbic acid. Fed. European Society Letters. 137: 327–329.

    Article  CAS  Google Scholar 

  • Hagendoorn, H. 1983. The African catfish Clarias lazera C and V 1840-A new species for aquaculture. Dissertation, Agriculture University, Wageningen, the Netherlands. 133 p.

  • Halliwell, B. 1989. Oxidants and the central nervous system: some fundamental questions. Acta Neural Scand. 126: 23–33.

    Article  CAS  Google Scholar 

  • Halliwell, B. 1992. Reactive oxygen species and central nervous system.J. Neurochem. 59: 1609–1623.

    PubMed  CAS  Google Scholar 

  • Hinton D.E. and Lauren D.J. 1990. Liver structure alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. In: Mc Carthy J.F. and Shugart L.R. (Ed) Biomarkers of environmental contaminations. Lewis Publishers, Boca Raton. Pp. 17–57.

    Google Scholar 

  • Hunter, F.E., Gebicki, J.M., Hoffstein, P.E., Weinstein, J. and Scott A. 1963. Swelling and lysis of rat liver mitochondria induced by ferrous ion. J. Biol. Chem. 238: 847–851.

    Google Scholar 

  • Khan R.A. and Kicheniuk, J.W. 1984. Histopathological effects of crude oil on Atlantic cod following chronic exposure. Can J. Zool 62: 2038–2043.

    Article  CAS  Google Scholar 

  • Kicheniuk, J.W. and Khan R.A. 1985. Toxicology of chronic crude oil exposure and subletal effects on aquatic organisms. Aquat. Toxicol. 13: 425–436.

    Google Scholar 

  • Liu, J. and Mori, A. 1994. Involvement of reactive oxygen species in emotional stress: a hypothesis based on the immobilization stress-induced oxidative damage and antioxidant defense changes in rat brain and the effect of antioxidant treatment with reduced glutathione. Int. J Stress Mgt. 1: 249–263.

    Article  Google Scholar 

  • Kicheniuk, J.W. and Khan, R.A. 1987. Effect of Petroleum hydrocarbons on Atlantic cod. Gardus following chronic exposure. Can J. Zool. 65: 490–494.

    Google Scholar 

  • Kori-Siakpere, O. 1998 Petroleum induced alterations in the African catfish Clarias gariepinus (Teugels 1984) I-Haematology. Nigerian J. Sci. Environ. 1: 49–55.

    Google Scholar 

  • Kori-Siakpere, O. 2000. Petroleum induced alterations in the African catfish, Clarias geriepins (Teugels 1984): II-Growth factors. Nigerian. J. Sci. Environ. 2: 87–92.

    Google Scholar 

  • Kukreja, R.C., Okabe, E., Schrier, G.M. and Hess, M.L. 1988. Oxygen radical-mediated lipid Peroxidation and inhibition of Ca2+-ATpase activity of cardiac sarcoplasmic reticulum. Arch. Biochem. Biophys. 261: 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Lushchak, V.I, Lushchak, L.P., Mota, A.A. and Hermes-Lima M. 2001. Oxidative stress and antioxidant defenses in gold-fish carassius auratus during anoxia and reoxygenation. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 280: 100–107.

    Google Scholar 

  • Martin, R., Rodriguez, A.J. and Proverbio, T. 1992. Partial characterization of the inhibitory effect of lipid peroxidation on the ouabain-insensitive Na+ ATpase of rat kidney cortex plasma membranes. J. Bionerg. Biomembr. 24: 329–335.

    Google Scholar 

  • Misra, H.P. and Fridovich, I. 1972. The role of superoxide ion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247: 3170–3175.

    PubMed  CAS  Google Scholar 

  • Monod, G., Devaux, A. and Riviere, J.L. 1988. Effect of chemical pollution on the activities of hepatic xenobiotic metabolising enzymes in fish from river Rhone France. Science and the Total Environment 73: 189–202.

    Article  CAS  Google Scholar 

  • Morris, C.J., Earl, J.R., Trenam, C.W. and Blake, D.R. 1995. Reactive oxygen species and iron-a dangerous partnership in inflammation. Int. J. Biochem. Cell. Biol. 27(2): 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H. 1993. Involvement of free radicals in aging: a consequence or cause of senescence. Brit. Med. Bull. 49: 653–667.

    PubMed  CAS  Google Scholar 

  • Parke, V.D. 1987. Role of enzymes in protection against lipid peroxidation. Regul. Toxicol. Pharmacol. 7: 222–235.

    Article  PubMed  CAS  Google Scholar 

  • Payne, J.F., Kicheniuk, J.W., Squires, W.R. and Fletcher, G.L. 1978. Pathological changes in Marine fish after a 6-month exposure to Petroleum. J. Fish. Res. Bd. Can. 35: 665–667.

    Google Scholar 

  • Reiter, R.J. 1995. Oxidative processes and antioxidative defense mechanisms in the aging brain FASEB J. 9: 526–533.

    PubMed  CAS  Google Scholar 

  • Sabo, D.J., Stegeman, J.J. and Gottleib, L.S. 1975. Petroleum hydrocarbon pollution and hepatic lipogenesis in the marine fish. (Fundulus heteroclitus). Fed. Proc. 34 (3): 810.

    Google Scholar 

  • Saltman, P. 1989. Oxidative stress: A radical view. Seminars in Hematology 26: 249–56.

    PubMed  CAS  Google Scholar 

  • Sevanian, A. and Hochstein, P. 1985. Mechanism and consequences of lipid peroxidation in biological systems. Ann. Rev. nutr. 5, 365–90.

    Article  CAS  Google Scholar 

  • Shika, S.C. 1996. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Frontiers Bioscience 1: 78–80.

    Google Scholar 

  • Smirnoff N. 1993. The role of active oxygen in response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Stern A., 1985. Red cell oxidative damage. In oxidative Stress, (ed). H. Sies. Academic press, NY, Pp. 331–49.

  • Thomas, D.P. and Poznnasky, M.J. 1990. Lipid peroxidation inactivates rat liver microsomal Glycerol-3-phosphate acyl transferase. Effect of iron and copper salt and carbon tetrachloride. J. Biol. Chem. 265: 2684–2691.

    PubMed  CAS  Google Scholar 

  • Thomas, C.E. and Reed, D.J. 1990. Radical-induced inactivation of kidney Na+ K+ ATpase: sensitivity to membrane lipid peroxidation and protective effect of vitamine E. Arch. Biochem. Biophys. 281: 96–105.

    Article  PubMed  CAS  Google Scholar 

  • Traven F. 1992. Frontier orbitals and properties of organic molecules. Ellis Harwood Publisher, London Pp. 235–238.

    Google Scholar 

  • Trostler N., Brady P.S., Romas D.R. and Leveille G.A. 1979. Influence of dietary vitamin E on malondialdehyde levels in liver and adipose tissue and on glutathione peroxidase and reductase activities in liver and erythrocytes of lean and obese mice. J. Nutr. 109: 345–352.

    PubMed  CAS  Google Scholar 

  • Val, A.L. and Almeida-Val, V.F. 1999. Effect of crude oil on respiratory aspect of some fish species of the Amazon: In Val A.L. and Almeida-Val V.M.F. (Eds) Biology of Tropical Fish Manaus, Brasil pp. 227–291.

  • Westlake, D.W.S. 1982. Microbial activities and changes in the chemical and physical properties of oil. Conf. On Microbial Enhancement Oil Recovery.

  • Yu, Q. and Rengel, Z. 1999. Micronutrient deficiency influences plant growth and activities of superoxide dismutase in narrowleafed lupins. Ann. Bot. 8: 175–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.I. Achuba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Achuba, F., Osakwe, S. Petroleum – induced free radical toxicity in African catfish (Clarias gariepinus) . Fish Physiology and Biochemistry 29, 97–103 (2003). https://doi.org/10.1023/B:FISH.0000035905.14420.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000035905.14420.eb

  • catalase activity
  • fish
  • lipid peroxidation
  • superoxide dismutase activity