Skip to main content

Effects of 3,5,3′-triiodo-L-thyronine (T3) and 6-n-propyl-2-thiouracil (PTU) on growth of GH-transgenic coho salmon, Oncorhynchus kitsutch

Abstract

GH-transgeniccoho salmon (Oncorhynchus kitsutch) juveniles were fed diets containing 3,5,3′-triiodo-L-thyronine (T3; 30 ng/g fish) or 6-n-propyl-2-thiouracil (PTU; 20 ug/g fish), to assess the effect of these drugs on the physiology, growthand survival in comparison with untreated transgenicand non-transgenic salmon. After 84 days, food intake, feed efficiency, survival, growth, hepato-somatic index (HSI), viscera-somatic index (VSI), plasma L-thyroxine (T4), T3and growth hormone (GH) levels,and cranial morphological abnormalities were determined. Growth of transgenic salmon was significantly faster than the nontransgenic salmon,and was increased by exogenous T3and reduced by PTU. Food intake of transgenic salmon was higher than that of the nontransgenic group, but was reduced by exogenous PTU administration. Food conversion efficiency of transgenic salmon was lower than that of nontransgenic salmon,and also was increased by T3 but reduced by PTU in the transgenic fish. The survival rate in all transgenic groups was significantly higher than that of nontransgenic,and transgenic T3and PTU treatment groups showed higher survivals than the transgenic-control group. The HSIand VSI of the transgenic fish were higher than the nontransgenic fish;and both parameters in the transgenic salmon were increased by PTU, but reduced by T3. The plasma T4 level in transgenic salmon was approximately 1.5-fold higher relative to the nontransgenic fish, whereas no difference was observed among the transgenic groups. Plasma T3 levels in transgenic salmon were also approximately 2-fold higher relative to the nontransgenic fish. However, the plasma T3 level in transgenic animals was increased by exogenous T3 administration, but was reduced by exogenous PTU to that observed in nontransgenic salmon. The plasma GH level of transgenic fish was higher than that of the nontransgenic salmon,and the level was increased by the exogenous T3, whereas exogenous PTU did not reduce significantly GH levels in transgenic salmon. Transgenic fish also displayed cranium, jawand opercular abnormalities typical of the effects of this gene construct incoho salmon, indicating that some imbalance in growth processes has been induced. However, these abnormalities (especially cranial disruptions) were diminished by administration of exogenous PTU. In conclusion, exogenous T3and PTU treatments can induce hyperthyroidismand hypothyroidism, respectively,and have inverse effects on growthand skeletal abnormalities of transgenic salmon constitutively expressing GH.

This is a preview of subscription content, access via your institution.

References

  • Ahmed, M.T., Sinha, A.K., Pickard, M.R., Kim, K.D.and Ekins, R.P. 1993. Hypothyroidism in the adult rat causes brain regionspecific biochemical dysfunction. J. Endocrinol. 138: 299–305.

    PubMed  Google Scholar 

  • Björnsson, B.Th., Stefansson, S.O.and Hansen, T. 1995. Photoperiod regulation of plasma growth hormone levels during parrsmolt transformation of Atlantic salmon: Implications for hypoosmoregulatory abilityand growth. Gen. Comp. Endocrinol. 100: 73–82.

    Article  PubMed  Google Scholar 

  • Boeuf, G.and Gaignon, J.L. 1989. Effects of rearing conditions on growthand thyroid hormones during smolting of Atlantic salmon, Salmo salar. Aquaculture 82: 29–38.

    Article  Google Scholar 

  • Brown, D.D. 1997. The role of thyroid hormone in zebrafishand axolotl development. Proc. Nat. Acad. Sci. U.S.A. 94: 13011–13016.

    Article  Google Scholar 

  • Childs, G.V., Taub, K., Jones, K.E.and Chin, W.W. 1991. Triiodothyronine receptor beta-2 messenger ribonucleic acid expression by somatotropesand thyrotropes effect of propylthiouracilinduced hypothyroidism in rats. Endocrinology 129: 2767–2773.

    PubMed  Google Scholar 

  • der Geyten, S.V., Segers, I., Gereben, B., Bartha, T., Rudas, P., Larsen, P.R., Kühn, E.R.and Darras, V.M. 2001. Transcriptional regulation of iodothyronine deiodinases during embryonic development. Mol. Cell. Endocrinol. 183: 1–9.

    PubMed  Google Scholar 

  • Devlin, R.H. 1997. Transgenic salmonids. In: Transgenic Animals: Generationand Use. pp. 105–117. Edited by Houdebine, L.M. Harwood Academic Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Devlin, R.H., Swanson, P., Clarke, W.C., Plisetskaya, E., Dickhoff, W., Moriyama, S., Yesaki, T.Y.and Hew, C.-L. 2000. Seawater adaptabilityand hormone levels in growth-enhanced transgeniccoho salmon, Oncorhynchus kisutch. Aquaculture 191: 367–385.

    Article  Google Scholar 

  • Devlin, R.H., Yesaki, T.Y., Biagi, C.A., Donaldson, E.M., Swanson, P.and Chan, W.-K. 1994. Extraordinary salmon growth. Nature 371: 209–210.

    Article  Google Scholar 

  • Devlin, R.H., Yesaki, T.Y., Donaldson, E.M.and Hew, C.L. 1995. Transmissionand phenotypic effects of an antifreeze/GH gene construct incoho salmon, Oncorhynchus kisutch. Aquaculture, 137: 161–169.

    Article  Google Scholar 

  • Eales, J.G. 1995. Regulationand measurement of thyroidal status in fish. Neth. J. Zool. 45: 175–180.

    Google Scholar 

  • Ebbesson, L.O.E., Björnsson, B.Th., Stefansson, S.O.and Fkström, P. 1998. Propylthiouracil-induced hypothyroidism incoho salmon, Oncorhynchus kisutch: Effects on plasma total thyroxine, total triiodothyronine, free thyroxine,and growth hormone. Fish Physiol. Biochem. 19: 305–313.

    Article  Google Scholar 

  • Fagerlund, U.H.M., Higgs, D.A., McBride, J.R., Plotnikoff, M.D.and Dosanjh, B.S. 1980. The potential for using the anabolic hormones 17 α-methyl-testosteroneand(or) 3,5,3'-triiodo-L-thyronine two ration levels in the fresh water rearing ofcoho salmon (Oncorhynchus kisutch)and the effects on subsequent seawater performance. Can. J. Zool. 58: 1424–1432.

    PubMed  Google Scholar 

  • Fagerlund, U.H.M., McCallum, I., Higgs, D.A., McBride, J.R., Plotnikoff, M.D.and Dosanjh, B.S. 1984. Diet composition as a factor in the anabolic efficacy of 3,5,3'-triiodo-L-thyronine administered orally to steelhead trout (Salmo gairdneri). Aquaculture 36: 49–59.

    Article  Google Scholar 

  • Farbridge, K.R.and Leatherland, J.F. 1988. Interaction between ovine growth hormoneand triiodo-L-thyronine on metabolic reserve of rainbow trout, Salmo gairdneri. Fish Physiol. Biochem. 5: 141–151.

    Google Scholar 

  • Farchi-Pisanty, O., Sternberg, H.and Moav, B. 1997. Transcriptional regulation of fish growth hormone gene. Fish Physiol. Biochem. 17: 237–246.

    Article  Google Scholar 

  • Frith, S.D.and Eales, J.G. 1996. Thyroid hormone deiodination pathways in brain liver of rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 101: 323–332.

    PubMed  Google Scholar 

  • Gavlik, S., Albino, M.and Specker, J.L. 2002. Metamorphosis in summer flounder: manipulation of thyroid status to synchronize settling behavior, growth,and development. Aquaculture 203: 359–373.

    Article  Google Scholar 

  • Gomez, J.M., Boujard, T., Boeuf, G., Solari, A.and Le Bail, P.-Y. 1997. Individual diurnal plasma profiles of thyroid hormones in rainbow trout, Oncorhynchus mykissin relation to cortisol, growth hormone,and growth rate. Gen. Comp. Endocrinol. 107: 74–83.

    Article  PubMed  Google Scholar 

  • Higgs, D.A., Dosanjh, B.S., Uin, L.M., Himick, B.A.and Eales, J.G. 1992. Effects of dietary lipidand carbohydrate levelsand chronic 3,5,3'-triiodo-L-thyronine treatment on growth, appetite, foodand protein utilizationand body composition of immature rainbow trout, Oncorhynchus mykiss, at low temperature. Aquaculture 105: 175–190.

    Article  Google Scholar 

  • Higgs, D.A., Fagerlund, U.H.M., Eales, J.G.and McBride, J.R. 1982. Application of thyroidand steroid hormones as anabolic agents in fish culture. Comp. Biochem. Physiol. 73: 143–176.

    Google Scholar 

  • Higgs, D.A., Fagerlund, U.H.M., McBride, J.R., Plotnikoff, M.D., Dosanjh, B.S., Markert, J.R.and Davidson, J. 1983. Protein quality of Altex Canola Meal for juvenile chinook salmon (Oncorhynchus tshawytscha) considering dietary proteinand 3,5,3'-triiodo-L-thyronine content. Aquaculture 34: 213–238.

    Article  Google Scholar 

  • Hirata, Y., Kurokura, H.and Kasahara, S. 1989. Effect of thyroxineand thiourea on the development of larval red sea bream, Pagrus major. Nippon Suisan Gakkaishi 55: 1189–1195.

    Google Scholar 

  • Kajimura S., Uchida, K., Yada, T., Riley, L.G., Byatt, J.C., Collier, R.J., Aida, K., Hirano, T.,and Grau, E.G. 2001. Stimulation of insulin-like growth factor-I production by recombinant bovine growth hormone in Mozambique tilapia, Oreochromis mossambicus. Fish Physiol. Biochem. 25: 221–230.

    Article  Google Scholar 

  • Kang, D.-Y.and Chang, Y.J. 1997. Effects of exogenous thyroid hormone (T3)on skeletal developmentand physiological conditions of juvenile black seabream (Acanthopagrus schlegeli). J. Korean Fish. Soc. 30: 305–312 (in Korean).

    Google Scholar 

  • Kang, D.-Y.and Chang, Y.J., 1996. Effect of dietary 3,5,3'-triiodo-L-thyronine (T3)on growthand survival rate in juvenile black seabream, Acanthopagrus schlegeli. J. Aquaculture 9: 215–222 (in Korean).

    Google Scholar 

  • MacLatchy, D.L.and Eales, J.G. 1990. Growth hormone stimulates hepatic thyroxine 5'-monodeiodinase activityand 3,5,3'-triiodothyronine levels in rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 78: 164–172.

    PubMed  Google Scholar 

  • MacLatchy, D.L.and Eales, J.G. 1992a. Properties of T4, 5'-deiodinating systems inVarious tissues of the rainbow trout new method to estimate length dependent growth. Aquaculture 69: 129–143.

    Google Scholar 

  • MacLatchy, D.L.and Eales, J.G. 1992b. Intra-and extra-cellular sources of T3 binding to putative thyroid hormone receptors in liver, kidney,and gill nuclei of immature rainbow trout (Oncorhynchus mykiss). J. Exp. Zool. 262: 22–29.

    PubMed  Google Scholar 

  • Manzon, R.G., Holmes, J.A.and Younson, J.H. 2001.Variable effects of goitrogens in inducing precocious metamorphosis in sea lampreys (Petromyzon marinus). J. Exp.Zool. 289: 290–303.

    Article  PubMed  Google Scholar 

  • McLeese, J.M.and Eales, J.G. 1996. Characteristics of the uptake of 3,5,3'-triiodo-L-thyronineand L-thyroxine into red blood cells of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 103: 200–208.

    Article  PubMed  Google Scholar 

  • Mol, K.A.,Van der Geyten, S., Burel, C., Kühn, E.R., Boujard, T.and Darras, V.M. 1998. Comparative study of iodothyronine outer ringand inner ring deiodinase activities in five teleostean fishes. Fish Physiol. Biochem. 18: 253–266.

    Article  Google Scholar 

  • Moon, H.Y., MacKenzie, D.S.and Gatlin, D.M. 1994. Effect of dietary thyroid hormones on the red drum (Sciaenops ocellatus). Fish Physiol. Biochem. 12: 369–380.

    Google Scholar 

  • Mori, T.and Devlin, R.H. 1999. Transgeneand host GH gene expression in pituitaryand nonpituitary tissues of normaland GH transgenic salmon. Molec. Cell. Endocrinol. 149: 129–139.

    Article  PubMed  Google Scholar 

  • Ostenfeld, T.H., McLean, E.and Devlin, R.H. 1998. Transgenesis changes bodyand head shape in Pacific salmon. J. Fish Biol. 52: 850–854.

    Article  Google Scholar 

  • Paek, I.and Axel, R. 1987. Glucocorticoids enhance stability of human growth hormone mRNA. Mol. Cell. Biol. 7: 1496–1507.

    PubMed  Google Scholar 

  • Shields, C.A.and Eales, J.G. 1986. Thyroxine 5'-monodeiodinase activity in hepatocytes of rainbow trout (Salmo gairdneri): dis85 tribution, effects of starvation,and exogenous inhibitors. Gen. Comp. Endocrinol. 63: 334–343.

    PubMed  Google Scholar 

  • Sternberg, H.and Moav, B. 1999. Regulation of the growth hormone gene by fish thyroid/retinoid receptors. Fish Physiol. Biochem. 20: 331–339.

    Article  Google Scholar 

  • Stevens, E.D.and Devlin, R.H. 2000. Intestinal morphology in growth hormone transgeniccoho salmon. J. Fish Biol. 56: 191–195.

    Article  Google Scholar 

  • Suen, C.-S.and Chin, W.W. 1993. Ligand-dependent, Pit-1/growth hormone factor-1 (GHF1)-independent transcriptional stimulation of rat growth hormone gene expression by thyroid hormone receptors in vitro. Mol. Cell. Biol. 13: 1719–1727.

    PubMed  Google Scholar 

  • Sullivan, C.V., Darling, D.S.and Dickhoff, W.W. 1987. Effects of triiodothyronineand propylthiouracil on thyroid functionand smoltification ofcoho salmon (Oncorhynchus kisutch). Fish Physiol. Biochem. 4: 121–135.

    Google Scholar 

  • Swanson, P. 1994. Radioimmunoassay of fish growth hormone, prolactin,and somatolactin. In: Biochemistryand Molecular Biology of Fishes vol. 3. pp. 545–556. Edited by Hochachka, P.W.and Mommsen, T.P. Elsevier, Amsterdam.

    Google Scholar 

  • Takagi, Y., Moriyama, S. Hirano, T.and Yamada, J. 1992. Effects of growth hormones on bone formationand resorption in rainbow trout (Oncorhynchus mykiss), as examined by histomorphometry of the pharyngeal bone. Gen. Comp. Endocrinol. 86: 90–95.

    PubMed  Google Scholar 

  • Tam, S.P., Lam, K.S.L.and Srivastava, G. 1996. Gene expression of hypothalamic somatostatin, growth hormone releasing factorand their pituitary receptors in hypothyroidism. Endocrinology 137: 418–424.

    Article  PubMed  Google Scholar 

  • Tata, J.R 1999. Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Biochimie 81: 359–366.

    Article  PubMed  Google Scholar 

  • Taurog, A., Dorris, M.L., Hu, W.-X.and Guziec, F.S. 1995. The Selenium Analog of 6-propylthiouracil: Measurement of its inhibitory effect on type I iodothyronine deiodinaseand of its antithyroid activity. Biochemical Pharmacology 49: 701–709.

    Article  PubMed  Google Scholar 

  • Valente, L.M.P., Le Bail, P.-Y., Gomes, E.F.S.and Fauconneau, B. 2003. Hormone profile in fast-and slow-growing strains of rainbow trout (Oncorhynchus mykiss) in response to nutritional state. Aquaculture, 219: 829–839.

    Article  Google Scholar 

  • Varghese, S.and Oommen. V.O. 1999. Thyroid hormones regulate lipid metabolism in a teleost Anabas testudineus(Bloch). Comp. Biochem. Physiol. B 124: 445–450.

    Google Scholar 

  • Woo, N.Y.S., Chung, A.S.B.and Ng, T.B. 1991. Influence of oral administration of 3,5,3'-triiodo-L-thyronine on growth, digestion, food conversionand metabolism in the underyearling red sea bream, Chrysophrys major(Temminckand Schlegel). J. Fish Biol. 39: 495–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, DY., Devlin, R.H. Effects of 3,5,3′-triiodo-L-thyronine (T3) and 6-n-propyl-2-thiouracil (PTU) on growth of GH-transgenic coho salmon, Oncorhynchus kitsutch . Fish Physiology and Biochemistry 29, 77–85 (2003). https://doi.org/10.1023/B:FISH.0000035903.77056.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000035903.77056.5c

  • GH-transgeniccoho salmon
  • growth hormone
  • propylthiouracil
  • thyroid hormones