Skip to main content

Adrenergic Regulation of Lipid Mobilization in Fishes; a Possible Role in Hypoxia Survival

Abstract

Lipids are for fish the major energy source. The nutritional conditions of most species vary throughout the year considerably. Thus storage and mobilization of lipids have to be tightly controlled, yet little is known about its control. Though several hormones are known to have a lipolytic effect, short term regulation of lipolysis is known for catecholamines only. Catecholamines are usually released under stress conditions, including hypoxia. In mammals these hormones have a strong lipolytic action, causing high plasma fatty acids levels during hypoxia. In contrast to mammals, several fish species show a decrease of plasma FFA-levels during hypoxia and anoxia. However, some studies gave contrasting results when catecholamines were administrated to different fish species. The reason for this may be due to opposing effects of catecholamines on lipolysis in different tissues. From catecholamine administration experiments in cannulated carp there is evidence that norepinephrine inhibits lipolysis via β1- and β3- adrenoceptors while β2-adrenoceptors are involved in stimulation of lipolysis. Thus the opposite responses of different β-adrenoceptors may explain the conflicting in-vivo results obtained with fish. In vitro studies with adipocytes from different fish species confirm that activation of β-adrenoceptors suppresses lipolysis, while the opposite occurs in hepatocytes. Inhibiting β1- and β3- adrenoceptors in adipocytes were shown to be involved. Under hypoxia β-oxidation is inhibited, resulting in accumulation of fatty acids together with intermediates of the β-oxidation. This process may cause severe cellular damage in mammalian tissues, which ‘apparently’ does not occur in fishes. Fishes encounter (environmental) hypoxia on a regular basis, while for mammals hypoxia/anoxia is a pathological phenomenon. Hence the suppression of lipolysis in fishes under hypoxia (by β1- and β3- adrenoceptors) may be considered as a survival mechanism lost in higher vertebrates.

This is a preview of subscription content, access via your institution.

References

  • Ballentyne, J.S., Mercure, F., Gerrits, M.F., van der Kraak, G., McKinley, S., Martens, D.W., Hinch, S.G. and Diewert, R.E. 1996. Plasma non-esterified fatty acid profiles in male and female sockeye salmon, Oncorhynchus nerka, during the spawning migration. Can. J. Fish. Aquat. Sci. 53: 1418–1526.

    Article  Google Scholar 

  • Bernard, S.F., Reidy, S.P., Zwingelstein, G. and Weber, J. 1999. Glycerol and fatty acid kinetics in rainbow trout: effects of endurance swimming. J. Exp. Biol. 202: 279–288.

    PubMed  CAS  Google Scholar 

  • Bilinski, E., Jonas, R. and Lau, Y.C. 1971. Lysosomal triglyceride lipase from lateral line tissue of rainbow trout (Salmo gairdnerii). J. Fish. Res. Bd. Can. 28: 1015–1018.

    CAS  Google Scholar 

  • Bilinski, E. and Lau, Y.C. 1969. Lipolytic activity toward long-chain triglycerides in lateral line muscle of rainbow trout (Salmo gairdneri). J. Fish. Res. Bd. Can. 26: 1837–1866.

    Google Scholar 

  • Bohus, B., Benus, R.F., Fokkema, D.S., Koolhaas, J.M., Nayakas, C., van Oortmerssen, G.A., Prins, A.J.A., de Ruiter, A.J.H., Scheurink, A.J.W. and Steffens, A.B. 1987. Neuroendocrine states and behavioral and physiological stress responses. Prog. Brain Res. 72: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Brighenti, L., Puviani, A.C., Gaviolo, M.C., Fabbri, E. and Ottolenghi, C. 1991. Interaction of salmon glucagon, glucagon-like peptide, and epinephrine in the stimulation of phosphorylase a activity in fish isolated hepatocytes. Gen. Comp. Endocrinol. 82: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, D.C., Skarstein, L and Klungsøyr, L. 1985. Uptake studies in adipocytes isolated from rainbow trout (Salmo gairdnerii). A comparison with adipocytes from rat and cat. Comp. Biochem. Physiol. 82A: 201–205.

    Article  CAS  Google Scholar 

  • Cochrane, W. and Rogers, M.P. 1990. Sensitivity of freshly isolated ovine adipocytes to inhibition of lipolysis by insulin. Comp. Biochem. Physiol. 96B: 331–333.

    CAS  Google Scholar 

  • Danulat, E. and Mommsen, T.P. 1990. Norepinephrine: A potent activator of glycogenolysis and gluconeogenesis in rockfish hepatocytes. Gen. Comp. Endocrinol. 78: 12–22.

    Article  PubMed  CAS  Google Scholar 

  • Eilertson, C.D. and Sheridan, M.A. 1993. Differential effects of somatostatin-14 and somatostatin-25 on carbohydrate and lipid metabolism in rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 92: 62–70.

    Article  PubMed  CAS  Google Scholar 

  • Fabbri, E., Capuzzo, A., and Moon, T.W. (1998) The role of circulating catecholamines in the regulation of fish metabolism: An overview. Comp. Biochem. Physiol. C 120: 177–192.

    PubMed  CAS  Google Scholar 

  • Farkas, T. 1967a. The effect of catecholamines and adrenocorticotropic hormone on blood and adipocyte tissue FFA levels in the fish Cyprinus carpio L. Prog. Biochem. Pharmacol. 3: 314–319.

    CAS  Google Scholar 

  • Farkas, T. 1967b. Examinations of fat metabolism in freshwater fishes. The sympathetic nervous system and mobilisation of fatty acids. Ann. Inst. Biol. Hung. Acad. Sci. 34: 129–138.

    CAS  Google Scholar 

  • Farkas, T. 1969a. Studies on the mobilisation of fats in lower vertebrates. Acta Biochim. Biophys. Acad. Sci. (Hungary) 4: 237–249.

    CAS  Google Scholar 

  • Farkas, T. 1969b. Effects of agents modifying the level of 3′-5‴-adenosine monophosphate in adipose tissue on mobilization of fats in fish and frogs. Ann. Inst. Biol. Hung. Acad. Sci. 36: 163–171.

    CAS  Google Scholar 

  • Galitzky, J., Carpene, C., Bousquet Melou, A., Berlan, M. and Lafontan, M. 1995. Differential activation of beta(1)-, beta(2)-and beta(3)-adrenoceptors by catecholamines in white and brown adipocytes. Fundam. Clin. Pharmacol. 9: 324–331.

    Article  PubMed  CAS  Google Scholar 

  • Germack, R., Starzec, A.B., Vassy, R. and Perret, G.Y. 1997. β-Adrenoceptor subtype expression and function in rat white adipocytes. Br. J. Pharmacol. 120: 201–210.

    PubMed  CAS  Google Scholar 

  • Greene, D.H.S. and Selivonchick, D.P. 1987. Lipid metabolism in fish. Prog. Lipid Res. 26: 53–85.

    Article  PubMed  CAS  Google Scholar 

  • Haman, F., Zwingelstein, G. and Weber, J.M. 1997. Effects of hypoxia and low temperature on substrate fluxes in fish: plasma metabolite concentrations are misleading. Am. J. Physiol. 273: R2046–2054.

    PubMed  CAS  Google Scholar 

  • Harmon, J.S., Rieniets, L.M. and Sheridan, M.A. 1993. Glucagon and insulin regulate lipolysis in trout liver by altering phosphorylation of triacylglycerol lipase. Am. J. Physiol. 265: R255–260.

    PubMed  CAS  Google Scholar 

  • Harmon, J.S. and Sheridan, M.A. 1992. Effects of nutritional state, insulin, and glucagon on lipid mobilization in rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrimol. 87: 214–221.

    Article  CAS  Google Scholar 

  • Henderson, R.J. and Tocher, D.R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26: 281–347.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, F.A. and Golovina, E.A. 2002. The role of amphiphiles. Comp. Biochem. Physiol. A 131: 527–533.

    Google Scholar 

  • Hochachka, P.W. 1985. Assessing metabolic strategies for surviving O2-lack: role of metabolic arrest coupled with channel arrest. Mol. Physiol. 8: 331–350.

    CAS  Google Scholar 

  • Hollenga, Ch., Haas, M., Deinum, J.T. and Zaagsma, J. (1991). Differences in functional cyclic AMP compartments mediating lipolysis by isoprenaline and BRL 37344 in four adipocyte types. Eur. J. Pharmacol. 200: 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Hütter, J.F. and Sobol, S. 1992. Role of fatty acid metabolites in the development of myocardial ischemic damage. Int. J. Biochem. 24: 399–403.

    Article  PubMed  Google Scholar 

  • Ince, B.W. and Thorpe, A. 1975. Hormonal and metabolite effects on plasma free fatty acids in the northern pike, Esox lucius L. Gen. Comp. Endocrinol. 27: 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, P.A. and Waterman, J. 1988. Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver slices cultured in vitro. Comp. Biochem. Physiol. 91A: 451–455.

    Article  CAS  Google Scholar 

  • Jezierska, B., Hazel, J.R. and Gerking, S.D. 1982. Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri Richardson, with attention of fatty acids. J. Fish Biol. 21: 681–692.

    Article  CAS  Google Scholar 

  • Jonas, R.E.E. and Bilinski, E. 1964. Utilization of lipids by fish. III. Fatty acid oxidation by various tissues from sockey salmon. J. Fish Res. Bd. Canada 21: 653–656.

    CAS  Google Scholar 

  • Katz, A.M. and Messineo, F.C. 1981. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ. Res. 48: 1–12.

    PubMed  CAS  Google Scholar 

  • Kidooka, M., Matsuda, M. and Handa, J. 1987. Effect of calcium antagonist and agonist on free fatty acid liberation in the ischemic brain of rats. Surg. Neurol. 28: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Lafontan, M. and Berlan, M. 1993. Fat cell adrenergic receptors and the control of white and brown cell function. J. Lipid Res. 34: 1057–1083.

    PubMed  CAS  Google Scholar 

  • Larsson, A.L. 1973. Metabolic effects of epinephrine and norepeinephrine in eel Anguilla anguilla L. Gen. Comp. Endocrinol. 20: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, A. and Fänge, R. 1977. Cholesterol and free fatty acids (FFA) in the blood of marine fish. Comp. Biochem. Physiol. 57B: 191–196.

    Google Scholar 

  • Leibson, L.G., Plisetskaya, E. and Mazina, T.I. 1968. The NEFA content in the blood of cyclostomata and fishes and the effect of epinephrine and insulin. J. Evol. Biochem. Physiol. 4: 121–127.

    CAS  Google Scholar 

  • Lin, Y., Dobbs, G.H. and Devries, A.L. 1974. Oxygen consumption and lipid content in red and white muscle of Antarctic fishes. J. Exp. Zool. 189: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Mazeaud, F. 1964. Vitesse de production de l'hyperglycemie adrenalique en function de la temperature chez la carpe. Intensite de la response en fonction de la dose d'hormone. C. R. Soc. Biol. 158: 36–40.

    CAS  Google Scholar 

  • Mazeaud, F. 1969. Acids gras libres plasmatiques et glycemie de la carpe (Cyprinus carpio L.) apres asphyxie du agitation musculaire epuisante. C. R. Soc. Biol. 163: 558–561.

    CAS  Google Scholar 

  • Mazeaud, F. 1973. Recherches sur la regulation des acides gras libres plasmatiques et de la glycemie chez les poissons. Thesis, Paris.

  • McClelland, G., Zwingelstein, G., Weber, J.M. and Brichon, G. 1994. Lipid composition of tissue and plasma in two mediterranean fishes, the gilt-head seabream (Chrysophyrys auratus) and the European seabass (Dicentrarchus labrax). Can. J. Fish. Aquat. Sci. 52: 161–170.

    Google Scholar 

  • Mersmann, H.J. 1998. Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. J. Anim. Sci. 76: 1396–1404.

    PubMed  CAS  Google Scholar 

  • Migliorini, R.J., Lima-Verde, J.S., Machado, C.R., Cardona, G.M.P., Garofalo, M.A.R. and Kettelhut, I.C. 1992. Control of adipose tissue lipolysis in ectotherm vertebrates. Am. J. Physiol. 263: R857–862.

    PubMed  CAS  Google Scholar 

  • Mills, S. 2000. Beta-adrenergic receptor subtypes mediating lipolysis in porcine adipocytes. Studies with BRL-37344, a putative β3–adrenergic agonist. Comp. Biochem. Physiol. 126C: 11–20.

    CAS  Google Scholar 

  • Minick, M.C. and Chavin, W. 1973. Effects of catecholamines upon serum FFA levels in normal and diabetic goldfish Carassius auratus L. Comp. Biochem. Physiol. 44A: 1003–1008.

    Article  Google Scholar 

  • Mommsen, T.P. and Plisetskaya, E.M. 1991. Insulin in fishes and agnathans: History, structure, and metabolic regulation. Reviews in Aquatic Sc. 4(2–3): 225–259.

    CAS  Google Scholar 

  • Moore, K. 1985. Fatty acid oxidation in ischaemic heart. Mol. Physiol. 8: 549–565.

    CAS  Google Scholar 

  • Morimoto C., Kameda K, Tsujita T. and Okuda H. 2001. Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J. Lipid Res. 42: 120–127.

    PubMed  CAS  Google Scholar 

  • Moyes, C.D., Buck, L.T., Hochachka, P.W. and Suarez, R.K. 1989. Oxidative properties of carp red and white muscle. J. Exp. Biol. 143: 321–331.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T. and Kato, R. 1980. α2-Adrenoceptors modulating insulin release from isolated pancreatic islets. Naunyn Schmied. Arch. Pharmacol. 313: 151–153.

    Article  CAS  Google Scholar 

  • Nickerson, J.G., Dugan, S.G., Drouin, G., Perry, S.F., Moon, T.W. (2003) Activity of the unique beta-adrenergic Na+/H+ exchanger in trout erythrocytes is controlled by a novel beta3–AR subtype. Am. J. Physiol. Regul Integr Comp Physiol. 285: R526–535.

    PubMed  Google Scholar 

  • Plisetskaya, E. 1980. Fatty acid levels in the blood of cyclostomes and fish. Environ. Biol. Fish. 5: 273–290.

    Article  CAS  Google Scholar 

  • Plisetskaya, E. and Mazina, T.I. 1969. The effect of hormones on NEFA content in the blood of the Baltic Lamprey (Lampetra fluviatilis L.). J. Evol. Biochem. Physiol. 5: 457–463.

    CAS  Google Scholar 

  • Prasad, M.R., Popescu, L.M., Moraru, I.I., Liu, X., Maity, S., Engelman, R.M. and Das, D.K. 1991. Role of phospholipases A2 and C in myocardial ischemic reperfusion injury. Am. J. Physiol. 29: H877–883.

    Google Scholar 

  • Prinzen, F.W., Van der Vusse, G.J., Arts, T., Roemen, T.H.M., Coumans, W. and Reneman, R.S. 1984. Accumulation of nonesterified fatty acids in ischemic myocardium. Am. J. Physiol. 247: H264–272.

    PubMed  CAS  Google Scholar 

  • Puviani, A.C., Ottolenghi, C., Gaviolli, M.E., Fabbri, E. and Brighenti, L. 1990. Action of glucagon and glucagon-like peptide on glycogen metabolism of trout isolated hepatocytes. Comp. Biochem. Physiol. 96B: 387–391.

    CAS  Google Scholar 

  • Reid, S.G., Bernier, N.J., and Perry, S.F. 1988 The adrenergic stress response in fish: control of catecholamine storage and release. Comp. Biochem. Physiol. C 120: 1–27.

    Google Scholar 

  • Randall, D.J., and Perry, S.F. 1992 Catecholamines. In: Fish Physiology, vol. XIIB, pp. 255–299. Academic Press inc New York. Editors: W.S. Hoar, D.J. Randall, A.P. Farrell.

    Google Scholar 

  • Scheurink, A.J.W, Steffens A.B., Bouritius, H., Dreteler, G.H., Bruntink, R., Remie, R. and Zaagsma, J. 1989. Sympathoadrenal influence on glucose, FFA, and insulin levels in exercising rats. Am. J. Physiol. 256: R161–168.

    PubMed  CAS  Google Scholar 

  • Sheridan, M.A., Allen, W.V. and Kerstetter, T.H. 1983. Seasonal variation in the lipid composition of steelhead trout, Salmo gairdnerii Richardson, associated with the parr-smolt transformation. J. Fish Biol. 23: 125–134.

    Article  CAS  Google Scholar 

  • Sheridan, M.A. and Allen, W.V. 1984. Partial purification of triacylglycerol lipase isolated from steelhead trout (Salmo gairdnerii) adipose tissue. Lipids 19: 347–352.

    CAS  Google Scholar 

  • Sheridan, M.A., Allen, W.V. and Kerstetter, T.H. 1985a. Changes in the fatty acid composition of steelhead trout, Salmo gairdneri R., associated with parr-smolt transformation. Comp. Biochem. Physiol. 80B: 671–676.

    CAS  Google Scholar 

  • Sheridan, M.A., Woo, N.Y.S. and Bern, H.A. 1985b. Changes in the rates of glycogenesis, glycogenolysis, lipogenesis and lipolysis in selected tissues of the coho salmon (Oncorhynchus kisutch) associated with parr-smolt transformation. J. Exp. Zool. 236: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, M.A. and Bern, H.A. 1986. Both somatostatin and caudal neuropeptide, urotensin II, stimulate lipid mobilization from coho salmon liver incubated in vitro. Reg. Pept. 14: 333–344.

    Article  CAS  Google Scholar 

  • Sheridan, M.A. 1987. Effects of epinephrine and norepinephrine on lipid mobilization from coho salmon liver incubated in vitro. Endocrinology 120: 2234–2239.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, M.A. 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition, and mobilization. Comp. Biochem. Physiol. 90B: 697–690.

    Google Scholar 

  • Sheridan, M.A. 1994. Mini Review. Regulation of lipid metabolism in poikilothermic vertebrates. Comp. Biochem. Physiol. 107B: 495–508.

    CAS  Google Scholar 

  • Shindo, K., Tsuchiya, T. and Matsumoto, J.J. 1986. Histological study on white and dark muscle of various fishes. Nippon Suisan Gakkaishi 52: 1377–1399.

    Google Scholar 

  • Spector, A.A. 1967. The transport and utilisation of free fatty acids. Ann. New York Acad. Sci.: 768–783.

  • Van den Thillart, G. and van Waarde, A. 1985. Teleosts in hypoxia: aspects of anaerobic metabolism. Mol. Physiol. 8: 393–411.

    CAS  Google Scholar 

  • Van den Thillart, G. and van Raaij, M. 1995. Endogenous fuels: noninvasive versus invasive approaches. In: Biochemistry and molecular biology of fishes. Vol 4, pp 33–63. Edited by Hochachka & Mommsen, Academic Press, New York.

    Google Scholar 

  • Van den Thillart, G.E.E.J.M., Vianen, G.J., Campos-Ponze, M., Lelieveld, H., Nieveen, M., van Raaij, M., Steffens, A. and Zaagsma, J. 2001. Differential role of adrenoceptors in the control of plasma glucose and fatty acids in carp, Cyprinus carpio (L). Am. J. Physiol. Regul Integr Comp Physiol. 281: R615–624.

    PubMed  CAS  Google Scholar 

  • Van der Vusse, G.J., Roemen, T.H.M., Flameng, W. and Reneman, R.S. 1983. Serum myocardium gradients of non-esterified fatty acids in dog, rat, and man. Biochim. Biophys. Acta 752: 362–370.

    Google Scholar 

  • Van Raaij, M.T.M. 1994. The level and composition of free fatty acids in the plasma of freshwater fish in a post-absorptive condition. Comp. Biochem. Physiol. 109A: 1067–1074.

    Article  CAS  Google Scholar 

  • Van Raaij, M.T.M., Bakker, E., Nieveen, M.C., Zirkzee, H. and van den Thillart, G.E.E.J.M. 1994a. Energy status and free fatty acid patterns in tissues of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss L.) during severe oxygen restriction. Comp. Biochem. Physiol 109A: 755–767.

    Article  CAS  Google Scholar 

  • Van Raaij, M.T.M., Breukel, B.J., van den Thillart, G.E.E.J.M. and Addink, A.D.F. 1994b. Lipid metabolism of goldfish, Carassius auratus (L.) during normoxia and anoxia. Indication for fatty acid chain elongation. Comp. Biochem. Physiol 107B: 75–84.

    CAS  Google Scholar 

  • Van Raaij, M.T.M., van den Thillart, G.E.E.J.M., Hallemeesch, M., Balm, P.H.M. and Steffens, A.B. 1995. The effect of arterially infused adrenaline, noradrenaline and insulin on plasma hormones and the levels of glucose and free fatty acids in common carp (Cyprinus carpio L). Am. J. Physiol. 268: R1163–1170.

    PubMed  CAS  Google Scholar 

  • Van Raaij, M.T.M., Pit, D.S.S., Balm, P.H.M., Steffens, A.B. and van den Thillart, G.E.E.J.M. 1996a. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Hormones and Behavior 30: 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Van Raaij, M.T.M., van den Thillart, G.E.E.J.M., Vianen, G.J., Pit, D.S.S., Balm, P.H.M. and Steffens, A.B. 1996b. Substrate mobilization and hormonal changes in rainbow trout and common carp (Cyprinus carpio L.) during deep hypoxia and subsequent recovery. J. Comp. Physiol. B 166: 443–452.

    CAS  Google Scholar 

  • Vianen, G.J. 1999. Hormonal control of energy metabolism in teleost fish during hypoxia. Thesis, Leiden.

  • Vianen, G.J., Obels, P.P., van den Thillart, G.E.E.J.M. and Zaagsma, J. 2002. β-Adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus). Am. J. Physiol. Endocrinol Metab. 282: E318–325.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Heigenhauser, G.J. and Wood, C.M. 1994. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphagen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism. J. Exp. Biol. 195: 227–258.

    PubMed  CAS  Google Scholar 

  • Weiss, J.N., Venkatesh, N., Lamp, S.T. 1992. ATP sensitive K+-channels and cellular K+ loss in hypoxic and ischemic mammalian ventricle. J. Physiol. 447: 649–673.

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga, S.E. 1997 The stress response in fish. Physiol Reviews 77: 591–625.

    CAS  Google Scholar 

  • White, A. and Fletcher, T.C. 1989. The effect of physical disturbance, hypoxia and stress hormones on serum components of the plaice, Pleuronectus platessa. Comp. Biochem. Physiol. 93A: 455–461.

    Article  CAS  Google Scholar 

  • White, A., Fletcher, T.C. and Pope, J.A. 1986. Seasonal changes in the serum lipid composition of the plaice, Pleuronectus platessa. J. Fish Biol. 28: 595–606.

    Article  CAS  Google Scholar 

  • Wright, P.A., Perry, S.F. and Moon, T.W. 1989. Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J. Exp. Biol. 147: 169–188.

    PubMed  CAS  Google Scholar 

  • Yeaman, S.J. 1990. Hormone sensitive lipase-a multipurpose enzyme in lipid metabolism. Biochim. Biophys. Acta 1052: 128–132.

    Article  PubMed  CAS  Google Scholar 

  • Zammit, V.A. and Newsholme, E.A. 1979. Activities of enzymes of fat and ketone body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem. J. 184: 313–322.

    PubMed  CAS  Google Scholar 

  • Zhou, S., Ackman, R.G. and Morrison, C. 1995. Storage of lipids in the myosepta of Atlantic salmon (Salmo salar). Fish. Physiol. Biochem. 14: 171–179.

    Article  CAS  Google Scholar 

  • Zhou, S., Ackman, R.G. and Morrison, C. 1996. Adipocyte and lipid distribution in the muscle tissue of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 53: 326–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van den Thillart, G., Vianen, G. & Zaagsma, J. Adrenergic Regulation of Lipid Mobilization in Fishes; a Possible Role in Hypoxia Survival. Fish Physiology and Biochemistry 27, 189–204 (2002). https://doi.org/10.1023/B:FISH.0000032754.42056.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000032754.42056.cb

  • adipocytes
  • adipose tissue
  • β-adrenoceptors
  • catecholamines
  • hypoxia
  • lipase
  • lipid storage
  • lipolysis
  • liver
  • NEFA
  • free fatty acids
  • teleosts
  • epinephrine
  • norepinephrine