Skip to main content

Using Genetic Variation to Understand Control of Feed Intake in Fish

Abstract

The overall goal of our research is to develop fish with superior growth, and feed efficiency attributes. Feed intake is integral to these characters. Over the last several years we have been working with channel catfish, Ictalurus punctatus, in two directions tied to feed intake regulation. One direction has been to identify genes functioning as physiological regulators of feed intake, and the other has been to measure and characterize the genetic variation in feed intake within and among distinct catfish populations which reveal a wide range in feeding response. The goals are to uncover the genetic basis of physiological variation, to understand the genes and interactions that produce the phenotypic differences observed and to exploit these differences in a selective breeding program. To investigate the links between genetic variation and physiological variation, differences in voluntary feed consumption were documented in two strains of channel catfish. Treatment with orexigenic compounds affected both strains similarly, though anorexigenic compounds inhibited feeding in one strain more than the other and low temperature treatment affected the strains differently with respect to feed efficiency. Phenotypic variation in feed intake among families within one strain suggested that approximately 40% of the variation in feed intake is due to genetic sources. Future work aimed at utilizing strains and families with divergent phenotypes for identifying the specific genes responsible for this variation is discussed.

This is a preview of subscription content, access via your institution.

References

  • Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R. and Burn, P. 1995. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 268: 546–549.

    Google Scholar 

  • Coleman, D.L. 1973. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia. 9: 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Company, R., Astola, A., Pendon, C., Valdiva, M.M. and Perez-Sanchez, J.. 2001. Somatotropic regulation of fish growth and adiposity: growth hormone (GH) and somatolactin (SL) relationship. Comp. Biochem. Physiol. C 130: 435–445.

    Article  CAS  Google Scholar 

  • Gjedrem, T. 1997. Selective breeding to improve aquaculture production. J World Aquacult. Soc. 28: 33–45.

    Google Scholar 

  • Gracey, A.Y. and Cossins, A.R. 2003. Application of microarray technology in environmental and comparative physiology. Annu. Rev. Physiol. 65: 231–259.

    Article  PubMed  CAS  Google Scholar 

  • Ingalls, A.M., Dickie, M.D. and Snell, G.D. 1950. Obese, new mutation in the mouse. J. Hered. 41: 317–318.

    PubMed  CAS  Google Scholar 

  • Jobling, M. and Miglavs, I. 1993. The size of lipid depots: a factor contributing to the control of food intake in Arctic charr, Salvelinus alpinus. J. Fish Biol. 43: 487–489.

    CAS  Google Scholar 

  • Johansen, S.J.S., Sveier, H. and Jobling, M. 2003. Lipostatic regulation of feed intake in Atlantic salmon Salmo salar L. defending adiposity at the expense of growth? Aquacult. Res. 34: 317–331.

    Article  Google Scholar 

  • Johnson, R.M., Johnson, T.M. and Londraville, R.L. 2000. Evidence for leptin expression in fishes. J. Exp. Zool. 286: 718–724.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J., Silverstein, J., Wolters, B., Shimizu, M., Dickhoff, W. and Shepherd, B. 2003. Disparate Regulation of the Insulinlike Growth Factor-Binding Proteins (IGFBPs) in a Primitive, Icatlurid Teleost (Ictalurus punctatus). Gen. Comp. Endocrinol. 134: 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, G.C. 1953. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. 140: 578–592.

    Article  CAS  Google Scholar 

  • Klein, S., Coppack, S.W., Mohamed-Ali, V. and Landt, M. 1996. Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes. 45: 984–987.

    PubMed  CAS  Google Scholar 

  • Lin, X., Volkoff, H., Narnaware, Y., Bernier, N.J., Peyon, P. and Peter, R.E. 2000. Brain regulation of feeding behavior and food intake in fish. Comp. Biochem. Physiol. A 126: 415–434.

    CAS  Google Scholar 

  • Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Earley, A.R., Barnett, A.H., Prins, J.B. and O'Rahilly, S. 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, K.M., Young, W.P., Danzmann, R.G., Robison, B.D., Rexroad, C., Noakes, M., Phillips, R.B., Bentzen, P., Spies, I., Knudsen, K., Allendorf, F.W., Cunningham, B.M., Brunelli, J., Zhang, H., Ristow, S., Drew, R., Brown, K.H., Wheeler, P.A. and Thorgaard, G.H. 2003. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim. Genet. 34: 102–115.

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T. and Collins, F. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice Science 268: 540–543.

    Google Scholar 

  • Pfrender, M.E., Spitze, K., Hicks, J., Morgan, K., Latta, L. and Lynch, M. 2000. Lack of concordance between genetic diversity estimates at the molecular and quantitative trait levels. Conservation Genetics 1: 263–269.

    Article  CAS  Google Scholar 

  • Renz, M., Tomlinson, E., Hultgren, B., Levin, N., Gu, Q.M., Shimkets, R.A., Lewin, D.A. and Stewart, T.A. 2000. Quantitative expression analysis of genes regulated by both obesity and leptin reveals a regulatory loop between leptin and pituitary derived ACTH. J Biol. Chem. 275: 10429–10436.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T., Danzmann, R.G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S.K., Woram, R.A., Okamoto, N., Ferguson, M.M., Holm, L., Guyomard, R. and Hoyheim, B. 2000 A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155: 1331–1345.

    PubMed  CAS  Google Scholar 

  • Seeley, R.J. and Moran, T.H. 2002. Principles for interpreting interactions among the multiple systems that influence food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283: R46–53.

    PubMed  CAS  Google Scholar 

  • Shearer, K.D., Silverstein J.T. and Plisetskaya, E.M. 1997. Role of adiposity in food intake control of juvenile Chinook salmon (Oncorhynchus tshawytscha). Comp. Biochem. Physiol. A. 118: 1209–1215.

    Article  Google Scholar 

  • Silverstein, J.T., Bondareva, V.M., Leonard, J.B.K. and Plisetskaya, E.M. 2001. Neuropeptide regulation of feeding in catfish, Ictalurus punctatus: a role for glucagons-like peptide-1(GLP-1)? Comp. Biochem. Physiol. B 129: 623–631.

    Google Scholar 

  • Silverstein, J.T., Bosworth, B.G., Waldbieser, G.C. and Wolters, W.R. 2001. Feed intake in channel catfish: Is there a genetic component. Aquaculture Res. 32(suppl 1): 199–205.

    Article  Google Scholar 

  • Silverstein, J.T. and Plisetskaya, E.M. 2000. Study of the effects of NPY and insulin in food intake regulation in fish. Am. Zool. 40: 296–308.

    Article  CAS  Google Scholar 

  • Silverstein J.T., Shimma H. and Ogata H., 1997. Early maturity in amago salmon: an association with energy storage. Can. J. Fish. Aquat. Sci. 54: 444–451.

    Article  CAS  Google Scholar 

  • Silverstein, J.T., Wolters, W.R. and Holland, M. 1999. Evidence of genetic differences in food intake regulation in channel catfish, Ictalurus punctatus. J. Fish Biol. 54: 607–615.

    Article  Google Scholar 

  • Silverstein, J.T., Wolters, W.R., Shimizu, M. and Dickhoff, W.W. 2000. Growth hormone treatment of channel catfish: strain and temperature effects on growth, plasma IGF-I levels, feed intake and efficiency and body composition. Aquaculture 190: 77–88.

    Article  CAS  Google Scholar 

  • Valente, L.M.P., Fauconneau, B. and Gomes, E.F.S. 1998. Voluntary feed intake, feed and nutrient utilisation in slow and fast growing rainbow trout strains. Aquat. Living Resour. 11: 93–99.

    Article  Google Scholar 

  • Valente, L.M.P., Le Bail, P.Y., Gomes, E.F.S. and Fauconneau, B. 2003. Hormone profile in fast and slow growing strains of rainbow trout (Oncorhychus mykiss) in response to nutritional state. Aquaculture 219: 829–839.

    Article  CAS  Google Scholar 

  • Volkoff, H., Eykelbosh, A.J. and Peter, R.E. 2003. Role of leptin in the control of feeding in goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res. 972: 90–109.

    Article  PubMed  CAS  Google Scholar 

  • Waldbieser, G.W., Bosworth, B.G., Nonneman, D.J. and Wolters, W.R. 2001. A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158: 727–734.

    PubMed  CAS  Google Scholar 

  • Williams, R.W., Gu, J., Qi, S. and Lu, L. 2001. The genetic structure of recombinant inbred mice: high resolution consensus maps for complex trait analysis. Genome Biol 2: 1–18.

    Google Scholar 

  • Yaghoubian, S., Filosa, M.F. and Youson, J.H. 2001. Proteins immunoreactive with antibody against a human leptin fragment are found in serum and tissues of the sea lamprey, Petromyzon marinus L. Comp. Biochem. Physiol. B. 129: 777–785.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J.M. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silverstein, J.T. Using Genetic Variation to Understand Control of Feed Intake in Fish. Fish Physiology and Biochemistry 27, 173–178 (2002). https://doi.org/10.1023/B:FISH.0000032724.36866.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000032724.36866.ce

  • physiology
  • quantitative genetics
  • channel catfish
  • neuroendcrinology