Skip to main content

In vitro Regulation of β-adrenoceptor Signaling in the Rainbow Trout, Oncorhynchus mykiss

Abstract

We review recent advances in the characterization of the β-adrenoceptor (AR) system of the trout and present new data on the mechanisms of β-AR desensitization. Phosphorylation of specific amino acids located in the third intracellular loop and cytoplasmic tail regions triggers β-AR desensitization. Analysis of trout β-AR sequences reveals a difference in putative phosphorylation profiles between β-AR subtypes, this suggests that each subtype (β2-, β3a- and β3b-AR) possesses different sensitivity to desensitization. β-Adrenoceptor kinase (βARK) and β-arrestin play a pivotal role in β-AR desensitization. The tissue distribution of β-arrestin and βARK mRNA in trout is reported for the first time and interestingly, both genes appear to be highly expressed in the trout red blood cell. Previous studies reported loss of β-AR binding sites in trout red blood cells following prolonged receptor activation. Reduction of β-AR mRNA levels is reported to contribute to down-regulation of β-ARs in some species. However, we did not detect a significant change in β-AR mRNA levels in trout subjected to environmental hypoxia, clenbuterol (a β-agonist) administration, or cortisol administration; therefore, changes in mRNA levels may not contribute to β-AR desensitization in trout.

This is a preview of subscription content, access via your institution.

References

  • Ask, J.A., Stene-Larsen, G. and Helle, K.B. 1980. Atrial β 2-adrenoceptors in the trout. J. Comp. Physiol. 139: 109–115.

    CAS  Google Scholar 

  • Ask, J.A., Stene-Larsen, G. and Helle, K.B. 1981. Temperature effects on the β 2-adrenoceptors of the trout atrium. J. Comp. Physiol. B 143: 161–168.

    CAS  Google Scholar 

  • Blom, N., Gammeltoft, S. and Brunak, S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry, A. and Granneman, J.G. 1999. Differential regulation of functional responses by β-adrenergic receptor subtypes in brown adipocytes. Am. J. Physiol. Regul. Integ. Comp. Physiol. 46: R147–R153.

    Google Scholar 

  • Chen, X.H., Harden, T.K. and Nicholas, R.A. 1994. Molecular cloning and characterization of a novel β-adrenergic receptor. J. Biol. Chem. 269: 24810–24819.

    PubMed  CAS  Google Scholar 

  • Devic, E., Paquereau, L., Steinberg, R., Caput, D. and Audigier, Y. 1997. Early expression of a β 1-adrenergic receptor and catecholamines in Xenopus oocytes and embryos. FEBS Lett. 417: 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Dugan, S.G. and Moon, T.W. 1998. Cortisol does not affect hepatic α-and β-adrenoceptor properties in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 18: 343–352.

    Article  CAS  Google Scholar 

  • Dugan, S.G., Lortie, M.B., Nickerson, J.G. and Moon, T.W. 2003. Regulation of the rainbow trout (Oncorhynchuss mykiss) hepatic β 2-adrenoceptor by adrenergic agonists. Comp. Biochem. Physiol. B136: 331–342

    Google Scholar 

  • Emorine, L.J., Feve, B., Pairault, J., Briend-Sutren, M-M., Marullo, S., Delavier-Klutchko, C. and Strosberg, D.A. 1991. Structural basis for functional diversity of β 1-, β 2-, and β 3-adrenergic receptors. Biochem. Pharmacol. 41: 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Emorine, L.J., Marullo, S., Briend-Sutren, M-M., Patey, G., Tate, K., Delavier-Klutchko, C. and Strosberg, A.D. 1989. Molecular characterization of the human β 3-adrenergic receptor. Science 245: 1118–1121.

    PubMed  CAS  Google Scholar 

  • Fabbri, E., Brighenti, L., Ottolenghi, C., Puviani, A.C. and Capuzzo, A. 1992. β-adrenergic receptors in catfish liver membranes-characterization and coupling to adenylate cyclase. Gen. Comp. Endocrinol. 85: 254–260.

    Article  PubMed  CAS  Google Scholar 

  • Fabbri, E. and Moon, T.W. 1994. Adrenergic receptors and second messenger systems in the liver of vertebrates. In: Perspectives in Comparative Endocrinology. pp. 499–506. Edited by K.G. Davey, R.E. Peter and S.S. Tobe. NRC, Canada.

    Google Scholar 

  • Fabbri, E., Gambarotta, A. and Moon, T.W. 1995. Adrenergic signaling and second messenger production in hepatocytes of two fish species. Gen. Comp. Endocrinol. 99: 114–124.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, N.J., Liggett, S.B., Drachman, D.E., Pei, G., Caron, M.G. and Lefkowitz, R.J. 1995. Phosphorylation and desensitization of the human β 1-adrenergic receptor. J. Biol. Chem. 270: 17953–17961.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S.G. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53: 1–24.

    PubMed  CAS  Google Scholar 

  • Gamperl, A.K., Wilkinson, M. and Boutilier, R.G. 1994. β-adrenoceptors in the trout (Oncorhynchus mykiss) heart: characterization, quantification and, effects of repeated catecholamine exposure. Gen. Comp. Endocrinol. 95: 259–272.

    Article  PubMed  CAS  Google Scholar 

  • Gamperl, A.K., Vijayan, M.M., Pereira, C. and Farrell, A.P. 1998. β-Receptors and stress protein 70 expression in hypoxic myocardium of rainbow trout and Chinook salmon. Am. J. Physiol. Regul. Integ. Comp. Physiol. 274: R428–R436.

    CAS  Google Scholar 

  • García-Sàinz, J.A., Cruz-Muñoz, M.E. and Romero-Avila, M.T. 1996. Characterization of the β 2-adrenoceptors of dog liver. Comp. Biochem. Physiol. C115: 61–65.

    Google Scholar 

  • Gilmour, K.M., Didyk, N.E., Reid, S.G. and Perry, S.F. 1994. Down-regulation of red blood cell β-adrenoceptors in response to chronic elevation of plasma catecholamines in the rainbow trout. J. Exp. Biol. 186: 309–314.

    PubMed  CAS  Google Scholar 

  • Hein, L. and Kobilka, B.K. 1995. Adrenergic receptor signal transduction and regulation. Neuropharmacology 34: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Jahns, R., Borgese, F., Lindenthal, S., Straub, A., Motais, R. and Fiévet, B. 1996. Trout red blood cell arrestin (TRCarr), a novel member of the arrestin family: cloning, immunoprecipitation and expression of recombinant TRCarr. Biochem. J. 316: 497–506.

    PubMed  CAS  Google Scholar 

  • Janssens, P.A. and Grigg, J.A. 1988. Binding of adrenergic ligands to liver plasma membrane preparations from the axolotl, Ambystoma mexicanum, the toad, Xenopus laevis, and the Australian lungfish, Neoceratodus forsteri. Gen. Comp. Endocrinol. 71: 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, P.A. and Lowrey, P. 1987. Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio. Am. J. Physiol. 252: R653–R660.

    PubMed  CAS  Google Scholar 

  • Kawai, Y., Powell, A. and Arinze, I. 1986. Adrenergic receptors in human liver plasma membranes: Predominance of β 2-and α 1-receptor subtypes. J. Clin. Endocrinol. Metabol. 62: 827–832.

    Article  CAS  Google Scholar 

  • Keen, J.E., Vianzon, D.M., Farrell, A.P. and Tibbits, G.F. 1993. Thermal acclimation alters both adrenergic sensitivity and adrenoceptor density in cardiac tissue of rainbow trout. J. Exp. Biol. 181: 27–47.

    CAS  Google Scholar 

  • Liggett, S.B. and Raymond, J.R. 1993. Pharmacology and molecular biology of adrenergic receptors. Baillière's Clin. Endrocrinol. Metabol. 7: 279–306.

    Article  CAS  Google Scholar 

  • Lomasney, J.W., Allen, L.F. and Lefkowitz, R.J. 1995. Cloning and regulation of catecholamine receptor genes. In: Molecular Endocrinology: Basic Concepts and Clinical Correlations. Chapter 10. Edited by B.D. Weintraub. Raven Press Ltd.

  • Lortie, M.B. and Moon, T.W. 2003. The rainbow trout skeletal muscle β-adrenergic system: characterization and signaling. Am. J. Physiol. Regul. Integ. Comp. Physiol. 284: R689–697.

    CAS  Google Scholar 

  • Marullo, S., Nantel, F., Strosberg, A.D. and Bouvier, M. 1995. Variability in the regulation of β-adrenoceptor subtypes. Biochem. Soc. Trans. 23: 126–129.

    PubMed  CAS  Google Scholar 

  • Mayor, F. Jr., Penela, P. and Ruiz-Gomez, A. 1998. Role of Gprotein-coupled receptor kinase 2 and arrestins in β-adrenergic receptor internalization. Trends Cardiovasc. Med. 8: 234–240.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, P.H. and Lefkowitz, R.J. 2001. β-Arrestins: new roles in regulating heptahelical receptors' functions. Cell Signal. 13: 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Motais, R., Borgese, F., Fievet, B. and Garcia Romeu, F. 1992. Regulation of Na+/H+ exchange and pH in erythrocytes of fish. Comp. Biochem. Physiol. A102: 597–602.

    Article  Google Scholar 

  • Nickerson, J.G., Dugan, S.G., Drouin, G. and Moon, T.W. 2001. A putative β 2-adrenoceptor from the rainbow trout (Oncorhynchus mykiss). Eur. J. Biochem. 268: 6465–6472.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, J.G., Dugan, S.D., Drouin, G., Perry, S.F. and Moon, T.W. 2003. Activity of the unique β-adrenergic Na+/H+ exchanger in trout erythrocytes is controlled by a novel β3–AR subtype. Am. J. Physiol. Regul. Integ. Comp. Physiol. 285: R526–R535.

    Google Scholar 

  • Nikinmaa, M. 1992. Membrane transport and control of hemoglobin-oxygen affinity in nucleated erythrocytes. Physiol. Rev. 72: 301–321.

    PubMed  CAS  Google Scholar 

  • Pende, A., Tremmel, K.D., DeMaria, C.T., Blaxall, B.C., Minobe, W.A., Sherman, J. A., Bisognano, J.D., Bristow, M.R., Brewer, G. and Port, D.J. 1996. Regulation of mRNA-binding protein AUF1 by activation of the β-adrenergic receptor signal transduction pathway. J. Biol. Chem. 271: 8493–8501.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S.F. and Reid, S.D. 1993. β-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish Physiol. Biochem. 11: 195–203.

    CAS  Google Scholar 

  • Perry, S.F. and Reid, S.G. 1994. Injection techniques. In: Biochemistry and Molecular Biology of Fishes. vol. 3, pp. 85–92. Edited by P.W. Hochachka and T.P. Mommsen, Analytical Techniques. Elsevier, Amsterdam.

    Google Scholar 

  • Perry, S.F., Reid, S.G. and Salama, A. 1996. The effect of repeated physical stress on the β-adrenergic response of the rainbow trout red blood cell. J. Exp. Biol. 199: 549–562.

    PubMed  CAS  Google Scholar 

  • Port, D.J. and Bristow, M.R. 2001. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J. Mol. Cell. Cardiol. 33: 887–905.

    Article  PubMed  CAS  Google Scholar 

  • Randall, D.J. and Perry, S.F. 1992 Catecholamines. In: Fish Physiology. vol. XIIB, pp. 255–300. Edited by W.S. Hoar, D.J. Randall and A.P. Farrell. Academic, San Diego.

    Google Scholar 

  • Reid, S.D. and Perry S.F. 1991. Effects and physiological consequences of raised levels of cortisol on rainbow trout (Oncorhynchus mykiss) erythrocyte β-adrenoceptors. J. Exp. Biol. 158: 217–240.

    PubMed  CAS  Google Scholar 

  • Reid, S.D., Moon, T.W. and Perry, S.F. 1992. Rainbow trout hepatocyte β-adrenoceptors, catecholamine responsiveness, and effects of cortisol. Am. J. Physiol. 31: R794–R799.

    Google Scholar 

  • Reid, S.G., Bernier, N.J. and Perry, S.F. 1998. The adrenergic stress response in fish: control of catecholamine storage and release. Comp. Biochem. Physiol. C120: 1–27.

    Google Scholar 

  • Sloman, K.A., Metcalfe, N.B., Taylor, A.C. and Gilmour, K.M. 2001. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol. Biochem. Zool. 74: 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Strosberg, A.D. 1993. Structure, function and regulation of adrenergic receptors. Protein Sci. 2: 1198–1209.

    Article  PubMed  CAS  Google Scholar 

  • Strosberg, A.D. 1995. Structural and functional diversity of β-adrenergic receptors. Ann. N.Y. Acad. Sci. 757: 253–260.

    PubMed  CAS  Google Scholar 

  • Sulakhe, S.J., Pulga, V.B. and Tran, S. 1988. Hepatic alpha-1 and beta-adrenergic receptors in various animal species. Mol. Cell. Biochem. 83: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Tetens, V., Lykkeboe, G. and Christensen, N.J. 1988. Potency of adrenaline and noradrenaline for beta-adrenergic proton extrusion from red blood cells of rainbow trout, Salmo gairdneri. J. Exp. Biol. 134: 267–280.

    PubMed  CAS  Google Scholar 

  • Tholanikunnel, B.G. and Malbon, C.C. 1997. A 20–nucleotide (A+U)-rich element of beta2–adrenergic receptor (beta2AR) mRNA mediates binding to beta2AR-binding protein and is obligate for agonist-induced destabilization of receptor mRNA. J. Biol. Chem. 272: 11471–11478.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids. Res. 22: 4673–4680.

    PubMed  CAS  Google Scholar 

  • Tsao, P. and von Zastrow, M. 2000. Down-regulation of G-protein coupled receptors. Curr. Opin. Neurobiol. 10: 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Valdenaire, O. and Vernier, P. 1997 G protein coupled receptors as modules of interacting proteins: a family meeting. Prog. Drug Res. 49: 174–218.

    Google Scholar 

  • Vatner, S.F., Vatner, D.E. and Homcy, C.J. 2000. β-Adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsα overexpression and other genetically engineered animal models. Circ. Res. 86: 502–506.

    PubMed  CAS  Google Scholar 

  • Vianen, G.I., Obels, P.P., van den Thillart, G.E.E.J.M. and Zaagsma, J. 2002. β-Adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus). Am. J. Physiol. Endocrinol. Metab. 282: E318–E325.

    PubMed  CAS  Google Scholar 

  • Vincent, J.D., Chardinaud, B. and Vernier, P. 1998. Evolution of monoamine receptors and the evolution of motivational and emotional systems in vertebrates. Bull. Acad. Natl. Med. 182: 1505–1514.

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga, S.E. 1997. The stress response in fish. Physiol. Rev. 77: 591–625.

    PubMed  CAS  Google Scholar 

  • Wright, P.A., Perry, S.F. and Moon, T.W. 1987. Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines during environmental hypoxia. J. Exp. Biol. 147: 169–188.

    Google Scholar 

  • Wolfe, B.B., Harden, T.K. and Molinoff, P.B. 1976 β-Adrenergic receptors in rat liver: Effects of adrenalectomy. Proc. Natl. Acad. Sci. USA 73: 1343–1347.

    Article  PubMed  CAS  Google Scholar 

  • Yarden, Y., Rodriguez, H., Wong, S.K-F., Brandt, D.R., May, D.C., Burnier, J., Harkins, R.N., Chen, E.Y., Ramachandran, J., Ullrich, A. and Ross, E.M. 1986. The avian beta-adrenergic receptor: primary structure and membrane topology. Proc. Natl. Acad. Sci. USA 83: 6795–6799.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, R., Cheng, H. and Tiersch, T.R. 2002. Differential genome duplication and fish diversity. Rev. Fish Biol. Fisheries 11: 331–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nickerson, J., Drouin, G., Perry, S. et al. In vitro Regulation of β-adrenoceptor Signaling in the Rainbow Trout, Oncorhynchus mykiss . Fish Physiology and Biochemistry 27, 157–171 (2002). https://doi.org/10.1023/B:FISH.0000032723.78349.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000032723.78349.4e

  • beta-arrestin
  • beta-receptor kinase
  • clenbuterol
  • cortisol
  • down-regulation
  • hypoxia
  • phosphorylation