Abstract
Using genetically controlled all-female and all-male tilapia (Oreochromis niloticus), the role steroid hormones play in the sex differentiation was analyzed histologically, ultrastructurally, immunohistichemically and experimenntally. The results strongly suggest that endogenous estrogen acts as an ovarian inducer, and that the lack of steroid hormone including androgen is important for testicular differentiation. Moreover, the roles of steroid hormones in protogynous sex change of three-spotted wrasse (Halichoeres trimaculatus) and saddleback wrasse (Tharassoma duperrey) were examined. The results strongly support the hypothesis that the endogenous estrogen plays an important role in protogynous sex change.
This is a preview of subscription content, access via your institution.
References
Afonso, L.O.B., Smith, J., Iwama, G.K. and Donaldson, E.M. 1999. Effects of the aromatase inhibitor Fadrozole on plasma sex sterid secretion and ovulation rate in female coho salmon, (Oncorhynchus kisutch) close to final maturation. Gen. Comp. Endocrinol. 113: 221–229.
Bhandari, R.K., Higa, M., Komuro, H., Nakamura, S. and Nakamura, M. 2003. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zool. Sci. 20: 1399–1403.
Bhandari, R.K., Higa, M., Nakamura, S. and Nakamura, M., 2004. Aromatase inhibitor induces complete sex in a protogynous fish (Epinephelus merra). Mol. Repro. Develop.
Higa, M., Ogasawara, K., Sakaguchi, A., Nagahama, Y. and Nakamura, M. 2003. Role of steroid hormone in sex change of protogynous wrasse. Fish. Physiol. Biochem. 67: 303–307.
Hunter, G.A. and E.M. Donaldson. 1987. Hormonal sex control and its application to fish culture. In: Fish Physiology, Vol. IXb. pp. 223–291. Edited by W.S. Hoar, D.J. Randall and E.M. Donaldson. Academic Press, New York, New York, USA.
Kobayashi, T., Chang, X.T., Nakamura, M., Kaziura, H. and Nagahama. Y. 1996. Fish 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase: Antibody production and their use for the immunohistochemical detection of fish steroidogenic tissues. Zool. Sci. 13: 909–914.
Morrey, C.M., Nakamura, M., Kobayashi, T., Grau, E.G. and Nagahama, Y. 1998. P450scc-lilke immunoreactivity throughout gonadal restructuring in the protogynous hermaphrodite Tharassoma duperrey. Int. J. Dev. Biol. 42: 811–816.
Nagahama, Y., Yoshikuni, M., Yamashita, M., Tokumoto, T. and Katsu, Y. 1995. Regulation of oocyte growth and maturation in fish. Curr. Topics Dev. Biol. 30: 103–145.
Nakamura, M. Chang, X-T. Kobayashi, T. Nagahama Y. 1998. Gonadal sex differentiation in fish. J. Exp. Zool. 281: 1–13
Nakamura, M. Hourigan, T.F., Yamauchi K., Nagahama, Y. and Grau, G.E. 1989. Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasse Thalassoma duperrey. Env. Biol. Fish. 24: 117–136.
Nakamura, M., Kobayashi, T., Yoshiura, Y. and Nagahama, Y. 1999. Role of endogenous steroid hormones on gonadal sex differentiation in fish. In: Proc. 6th Int. Symp. Reprod. Physiol. Fish. Edited by B. Noberg, O.S. Kjesbu, G.L. Taranger, E. Andersson and S.O. Stefansson. Bergen, Norway, pp. 247–249.
Nakamura, M. and Nagahama, Y. 1985. Steroid producing cells during ovarian differentiation of the tilapia (Sarotherodon niloticus). Dev. Growth. Differ. 27: 701–708.
Nakamura, M. and Nagahama, Y. 1989. Differentiation and development of Leydig cells, and change of testosterone levels during testicular differentiation in tilapia Oreochromis niloticus. Fish Physiol. Biochem. 7: 211–219.
Nakamura, M. and Nagahama, Y. 1993. Ultrastructural study on the differentiation of steroid-producing cells during ovarian differentiation in the amago salmon, (Oncorhynchus rhodurus). Aquaculture. 112: 237–251.
Pandian, T.J. and Sheela, S.G., 1995. Hormonal induction of sex reversal in fish. Aquaculture. 138: 1–22
Piferrer, F., Zanuy, S., Carrillo, M., Solar II., Devlin, R.H., Donaldson, E.M. 1994. Brief treatmet with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. J. Exp. Zool., 270: 255–262.
Piferrer F. 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197: 229–281.
Schreck, C.B. 1974. Hormonal treatment and sex manipulation in fishes. In: Control of Sex in Fishes. pp. 84–106. Edited by C.B. Schreck, Virginia Polytechnic Institute and State University Press, Blacksburg.
Yamamoto, T. 1969. Sex differentiation. In: Fish Physiology, Vol. III. Edited by W.S. Hoar and D.J. Randall, Academic Press, New York, pp. 117–175.
Yamazaki, F. 1983. Sex control and manipulation of fish. Aquaculture. 33: 329–354.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nakamura, M., Bhandari, R.K. & Higa, M. The role estrogens play in sex differentiation and sex changes of fish. Fish Physiology and Biochemistry 28, 113–117 (2003). https://doi.org/10.1023/B:FISH.0000030495.99487.17
Issue Date:
DOI: https://doi.org/10.1023/B:FISH.0000030495.99487.17
- aromatase
- aromatase inhibitor
- bipotency
- estrogen
- sex change
- sex differentiation