, Volume 138, Issue 3, pp 205–212 | Cite as

In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers

  • Yao Djè
  • Myriam Heuertz
  • Mohamed Ater
  • Claude Lefèbvre
  • Xavier Vekemans


We assessed the outcrossing rate of sorghum landraces sampled in situ from two fields under traditional cultivation in north-western Morocco using genotypic data from five microsatellite loci. Assuming a mixed mating model, we estimated outcrossing parameters by two methods that are based on progeny analyses. With both methods, the multilocus estimate of outcrossing rate for the overall sample was in the order of 0.1, meaning that sorghum landraces are predominantly autogamous, but with a significant proportion of outcrossing. The estimated outcrossing rate is about two times higher in field 1 (tm= 0.161) than in field 2 (tm= 0.069). This difference could be explained by distinct morphological characteristics of the inflorescence in the two fields, with predominance of loose panicles in field 1 and of very compact panicles in field 2. The distribution of outcrossing rate among progeny families showed that 30% of them were completely self-fertilized but some families showed substantial outcrossing. These results are at odds with the very low genetic differentiation observed previously among Moroccan landraces and suggest that morphological differences are maintained despite gene flow through seed exchanges among farmers.

landrace mating system microsatellite outcrossing rate Sorghum bicolor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, A.D.H. & R.W. Allard,1970. Estimation of the mating sys-tem in open-pollinated maize populations using isozyme poly-morphisms. Genetics66:133-145.Google Scholar
  2. Brown, S., M. Hopkins, S. Mitchell, M. Senior, T. Wang, R. Duncan, F. Gonzalez-Candelas & S. Kresovich,1996. Multiple methods for the identification of polymorphic simple repeats (SSRs) in sorghum (Sorghum bicolor (L) Moench). Theor Appl Genet93: 190-198.Google Scholar
  3. Chantereau, J. & R. Nicou,1991. Le sorgho. Maisonneuve & Larose, Paris.Google Scholar
  4. Clegg, M.,1980. Measuring plant mating systems. Bioscience30: 814-818.Google Scholar
  5. Djè, Y., M. Ater, C. Lefèbvre & X. Vekemans,1998. Patterns of morphological and allozyme variation in sorghum landraces of northwestern Morocco. GRACE45:541-548.Google Scholar
  6. Djè, Y., D. Forcioli, M. Ater, C. Lefèbvre & X. Vekemans,1999. As-sessing population genetic structure of sorghum landraces from north-western Morocco using allozyme and microsatellite mark-ers. Theor Appl Genet99:157-163.Google Scholar
  7. Djè, Y., M. Heuertz, C. Lefèbvre & X. Vekemans,2000. Assess-ment of genetic diversity within and among germplasm acces-sions in cultivated sorghum using microsatellite markers. Theor Appl Genet100:918-925.Google Scholar
  8. Doggett, H.,1988. Sorghum, 2nd edn. Longman, New York.Google Scholar
  9. Doyle, J. & J. Doyle,1990. Isolation of plant DNA from fresh tissue. BRL Focus12:13-15.Google Scholar
  10. Ellstrand, N. & K. Foster,1983. Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet66:323-327.Google Scholar
  11. Gaiotto, F., M. Bramucci & D. Grattapaglia,1997. Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with a dominant RAPD and AFLP markers. Theor Appl Genet 95:842-849.Google Scholar
  12. Godt, M. & J. Hamrick,1991. Estimates of outcrossing rates in Lath-yrus latifolius populations. Genome34:988-992.Google Scholar
  13. Hamrick, J. & M. Godt,1990. Allozyme diversity in plant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir (Eds.), Plant Population, Genetics, Breeding and Genetic Resources, pp.43-63. Sinauer Associates, Sunderland, MA.Google Scholar
  14. Harlan, J.R. & J.M.J. de Wet,1972. A simplified classification of cultivated Sorghum. Crop Sci12:172-176.Google Scholar
  15. Holtsford, T. & N. Ellstrand,1989. Variation in outcrossing rate and population genetic structure of Clarkia temblorensis (Ona-graceae). Theor Appl Genet78:480-488.Google Scholar
  16. Kadiri, M. & M. Ater,1997. Diversité des variétés "locales" du sorgho grain (Sorghum bicolor L. Moench) au Nord Ouest du Maroc. In: A. Birouk & M. Rejdali (Eds.), Ressources Phy-togénétiques et Développement Durable, pp.203-218. Actes éditions, Rabat, Maroc.Google Scholar
  17. Maunder, A. & G. Sharp,1963. Localization of outcrosses within panicle of fertile sorghum. Crop Sci 3:449.Google Scholar
  18. Morden, C.W., J. Doebley & K.F. Schertz,1989. Allozyme variation in old world races of Sorghum bicolor (Poaceae). Am J Bot76: 247-255.Google Scholar
  19. Nei, M.,1978. Estimation of average heterozygosity and genetic dis-tance from a small number of individuals. Genetics89:583-590.Google Scholar
  20. Ollitrault, P.,1987. Evaluation génétique des sorghos cultivés (Sorghum bicolor (L) Moench) par l'analyse conjointe des.212 diversités enzymatiques et morphologiques en relation avec les sorghos sauvages. Thèse no.199. Université de Paris-Sud, Centre d'Orsay.Google Scholar
  21. Ollitrault, P., J.L. Noyer, J. Chantereau & J.C. Glaszmann,1997. Structure génétique et dynamique des variétés traditionnelles de sorgho au Burkina-Faso. In: A. Begic (Ed.), Gestion des ressources génétiques des plantes en Afrique des savanes, pp. 231-240. IER-BRG Solagral, Bamako, Mali.Google Scholar
  22. Pendleton, B., G. Teetes & G. Peterson,1994. Phenology of sorghum flowering. Crop Sci34: 1263-1266.Google Scholar
  23. Ritland, K.,1990. A series of FORTRAN computer programs for estimating plant mating systems. J Hered81:235-237.Google Scholar
  24. Ritland, K.,2002. Extension of models for the estimation of mating systems using n independent loci. Heredity88:221-228.Google Scholar
  25. Ritland, K. & S. Jain,1981. A model for the estimation of outcross-ing rate and gene frequencies using n independant loci. Heredity 47:35-52.Google Scholar
  26. Shaw, D., A. Kahler & R. Allard,1981. A multilocus estimator of mating system parameters in plant populations. Proc Natl Acad Sci USA78: 1298-1302.Google Scholar
  27. Streiff, R., A. Ducousso, C. Lexer, H. Steinkellner, J. Gloessl & A. Kremer,1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Quercus petraea (Matt.) Liebl. Mol Ecol 8:831-841.Google Scholar
  28. Taramino, G., R. Tarchini, S. Ferrario, M. Lee & M. Pé,1997. Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet95:66-72.Google Scholar
  29. Vekemans, X., Y. Djè & C. Lefèbvre,2001. Assessment of genetic structure in sorghum using microsatellites: Comparison be-tween worldwide germplasm accessions and landraces sampled in situ from north-western Morocco. In: A. Gallais, C. Dillmann & I. Goldringer (Eds.), Eucarpia. Quantitative Genetics on Breeding Methods: The Way Ahead, pp.315-316. Les colloques no. 39, 30-31 August-1 September 2000, INRA Editions, Paris.Google Scholar
  30. Vekemans, X. & C. Lefèbvre,1997. On the evolution of heavy-metal tolerant populations in Armeria maritima: Evidence from allozyme variation and reproduction barriers. J Evol Biol10: 175-191.Google Scholar
  31. Weir, B. & C. Cockerham,1984. Estimating F-statistics for the analysis of population structure. Evolution38: 1358-1370.Google Scholar
  32. Wells, W., W. Isom & J. Waines,1988. Outcrossing rates of six common bean lines. Crop Sci28:177-178.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yao Djè
    • 1
  • Myriam Heuertz
    • 1
  • Mohamed Ater
    • 2
  • Claude Lefèbvre
    • 1
  • Xavier Vekemans
    • 3
  1. 1.Laboratoire de Génétique et d'Ecologie VégétalesUniversitéLibre de BruxellesBelgium
  2. 2.Département de BiologieFaculté des Sciences, UniversitéAbdelmalek Essaâdi, B.PMorocco
  3. 3.Laboratoire GEPV, UMR CNRS 8016Bât. SN2, Universitéde LILLE 1France

Personalised recommendations