Skip to main content
Log in

Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Molecular markers bring new information on the determinism of trait variation and the organisation of genetic diversity within plant species of agricultural interest. We review here how this information can be used to increase the efficiency of plant breeding programs, considering both theoretical analyses and recent experimental data. Use of mapping information to assemble alleles of interest is discussed first, considering an increasing complexity in trait determinism and its consequences on the breeding schemes. Experimental data now confirm the efficiency of these approaches. They call however, for (i) a better modelling of phenotype determinism, to better anticipate the final effect of marker assisted selection and (ii) studies that would address trait variation determinism within a broad diversity, to increase the probability to identify alleles of key interest and identify stable marker-trait associations. Recent promising developments in genetic diversity analysis are discussed with respect to these last objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, N., L. Albar, G. Pressoir, A. Pinel, D. Fargette et al., 2001. Genetic basis and mapping of the resistance to Rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies.92 confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103: 1084–1092.

    Article  CAS  Google Scholar 

  • Ayoub, M., E. Armstrong, G. Bridger, M.G. Fortin & D.E. Mather, 2003. Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci 43: 556–561.

    Article  CAS  Google Scholar 

  • Bataillon, T.M., J.L. David & D.J. Schoen, 1996. Neutral genetic markers and conservation genetics: Simulated germplasm collec-tions. Genetics 144: 409–417.

    PubMed  CAS  Google Scholar 

  • Beavis, W.D., 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: D.B. Wilkinson (Ed.), 49th Annual Corn and Sorgum Research Conference, pp. 250–266. American Seed Trade Association, Chicago.

    Google Scholar 

  • Bohn, M., H.F. Utz & A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39: 228–237.

    Article  CAS  Google Scholar 

  • Bost, B., D. de Vienne, F. Hospital, L. Moreau & C. Dillmann, 2001. Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics 157: 1773–1787.

    PubMed  CAS  Google Scholar 

  • Bouchez, A., F. Hospital, M. Causse, A. Gallais & A. Charcosset, 2002. Marker-assisted introgression of favorable alleles at quan-titative trait loci between maize elite lines. Genetics 162: 1945–1959.

    PubMed  CAS  Google Scholar 

  • Buckler, E.S. & J.M. Thornsberry, 2002. Plant molecular diversity and its applications to genomics. Curr Opin Plant Biol 5.

  • Burkhamer, R.L., S.P. Lanning, R.J. Martens, J.M. Martin & L.E. Talbert, 1998. Predicting progeny variance from parental diver-gence in hard red spring wheat. Crop Sci 38: 243–248.

    Article  Google Scholar 

  • Chapman, S., M. Cooper, D. Podlich & G. Hammer, 2003. Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95: 99–113.

    Article  Google Scholar 

  • Charcosset, A. & L. Essioux, 1994. The effect of population struc-ture on the relationship between heterosis and heterozygosity at marker loci. Theor Appl Genet 89: 336–343.

    Article  Google Scholar 

  • Charcosset, A. & A. Gallais, 1996. Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor Appl Genet 93: 1193–1201.

    Article  Google Scholar 

  • Charcosset, A. & A. Gallais, 2002. Application of markers in selection. In: Molecular Markers in Plant Genetics and Biotechnology, pp. 153–176.

  • Charmet, G., N. Robert, M.R. Perretant, G. Gay, P. Sourdille et al., 1999. Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred lines. Theor Appl Genet 99: 1143–1148.

    Article  Google Scholar 

  • Charmet, G., N. Robert, M.R. Perretant, G. Gay, P. Sourdille et al., 2001. Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119: 89–93.

    Article  CAS  Google Scholar 

  • Chen, S., C.G. Xu, X.H. Lin & Q. Zhang, 2001. Improving bacterial blight resistance of '6078', an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breeding 120: 133–137.

    Article  CAS  Google Scholar 

  • Concibido, V.C., R.L. Denny, D.A. Lange, J.H. Orf & N.D. Young, 1996. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci 36: 1643–1650.

    Article  CAS  Google Scholar 

  • Concibido, V.C., B. La Vallee, P. McLaird, N. Pineda, J. Meyer et al., 2003. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106: 575–582.

    PubMed  CAS  Google Scholar 

  • Dekkers, J.C.M., R. Chakraborty & L. Moreau, 2002. Optimal selec-tion on two quantitative trait loci with linkage. Genet Selection Evol 34: 171–192.

    Article  CAS  Google Scholar 

  • Dekkers, J.C.M. & F. Hospital, 2002. The use of molecular genetics in the improvement of agricultural populations. Nature Rev Genet 3: 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Dekkers, J.C.M. & J.A.M. van Arendonk, 1998. Optimizing selection for quantitative traits with information on an identified locus in outbred populations. Genet Res 71: 257–275.

    Article  Google Scholar 

  • Dubreuil, P., C. Rebourg, M. Warburton, M. Chastanet, B. Goues-nard et al., 2003. Use of DNA pooling to assess diversity within and among maize populations. Application to the investigation of maize introduction into Europe. Maize Genet Conf Abst 45: 129.

    Google Scholar 

  • Eathington, S.R., J.W. Dudley & G.K. Rufener, 1997. Usefulness of marker-QTL associations in early generation selection. Crop Sci 37: 1686–1693.

    Article  Google Scholar 

  • Eshed, Y. & D. Zamir, 1996. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807–1817.

    PubMed  CAS  Google Scholar 

  • Falush, D., M. Stephens & J.K. Pritchard, 2003. Inference of pop-ulation structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    PubMed  CAS  Google Scholar 

  • Frary, A., T.C. Nesbitt, S. Grandillo, E. van der Knaap, B. Cong et al., 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, M. & A.E. Melchinger, 2001. The length of the intact donor chromosome segment around a target gene in marker-assisted backcrossing. Genetics 157: 1343–1356.

    PubMed  CAS  Google Scholar 

  • Gallais, A., 1990. Théorie de la sélection en amélioration des plantes. Masson, Paris Milan Barcelon Mexico.

    Google Scholar 

  • Gallais, A., C. Dillmann & F. Hospital, 1997. An analytical approach of marker assisted selection with selection on markers only in Advances in biometrical genetics. In: Proceedings of the tenth meeting of the EUCARPIA Section Biometrics in Plant Breeding, Poznan, Poland, 14–16 May 1997.

    Google Scholar 

  • Gauthier, P., B. Gouesnard, J. Dallard, R. Redaelli, C. Rebourg et al., 2002. RFLP diversity and relationships among tradi-tional European maize populations. Theor Appl Genet 105: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Gouesnard, B., T.M. Bataillon, G. Decoux, C. Rozale, D.J. Schoen et al., 2001. MSTRAT: An algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Heredity 92: 93–94.

    Article  CAS  Google Scholar 

  • Gumber, R.K., B. Schill, W. Link, E. von Kittlitz & A.E. Melchinger, 1999. Mean, genetic variance, and usefulness of selfing progenies from intra-and inter-pool crosses in faba beans (Vicia faba L.) and their prediction from parental parameters. Theor Appl Genet 98: 569–580.

    Article  Google Scholar 

  • Gut, I.G., 2001. Automation in genotyping of single nucleotide poly-morphisms. Hum Mutat 17: 475–492.

    Article  PubMed  CAS  Google Scholar 

  • Han, F., I. Romagosa, S.E. Ullrich, B.L. Jones, P.M. Hayes et al., 1997. Molecular marker-assisted selection for malting quality traits in barley. Mol Breeding 3: 427–437.

    Article  CAS  Google Scholar 

  • Hansen, M., C. Hallden, N.O. Nilsson & T. Sall, 1997. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breeding 3: 449–456.

    Article  CAS  Google Scholar 

  • Hittalmani, S., A. Parco, T.V. Mew, R.S. Zeigler & N. Huang, 2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100: 1121–1128.

    Article  CAS  Google Scholar 

  • Hoggart, C.J., E.J. Parra, M.D. Shriver, C. Bonilla, R.A. Kittles et al., 2003. Control of confounding of genetic associations in stratified populations. Amer J Hum Genet 72: 1492–1504..93

    Article  PubMed  CAS  Google Scholar 

  • Hospital, F., 2001. Size of donor chromosome segments around in-trogressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158: 1363–1379.

    PubMed  CAS  Google Scholar 

  • Hospital, F. & A. Charcosset, 1997. Marker-assisted introgression of quantitative trait loci. Genetics 147: 1469–1485.

    PubMed  CAS  Google Scholar 

  • Hospital, F., C. Chevalet & P. Mulsant, 1992. Using Markers in Gene Introgression Breeding Programs. Genetics 132: 1199–1210.

    PubMed  CAS  Google Scholar 

  • Hospital, F., I. Goldringer & S. Openshaw, 2000. Efficient marker-based recurrent selection for multiple quantitative trait loci. Genetical Research 75: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Hospital, F., L. Moreau, F. Lacoudre, A. Charcosset & A. Gallais, 1997. More on the efficiency of marker-assisted selection. Theor Appl Genet 95: 1181–1189.

    Article  Google Scholar 

  • Igartua, E., M. Edney, B.G. Rossnagel, D. Spaner, W.G. Legge et al., 2000. Marker-based selection of QTL affecting grain and malt quality in two-row barley. Crop Sci 40: 1426–1433.

    Article  CAS  Google Scholar 

  • Jansen, R.C., J.L. Jannink & W.D. Beavis, 2003. Mapping quan-titative trait loci in plant breeding populations: Use of parental haplotype sharing. Crop Sci 43: 829–834.

    Article  CAS  Google Scholar 

  • Jefferies, S.P., B.J. King, A.R. Barr, P. Warner, S.J. Logue et al., 2003. Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding 122: 52–56.

    Article  CAS  Google Scholar 

  • Johnson, E.S., M.F. Wolff, E.A. Wernsman & R.C. Rufty, 2002. Marker-assisted selection for resistance to black shank disease in tobacco. Plant Disease 86: 1303–1309.

    CAS  Google Scholar 

  • Kelly, J.D., & P.N. Miklas, 1998. The role of RAPD markers in breeding for disease resistance in common bean. Mol Breeding 4: 1–11.

    Article  CAS  Google Scholar 

  • Kisha, T.J., C.H. Sneller & B.W. Diers, 1997. Relationship between genetic distance among aprents and geentic variance in popula-tions of sybean. Crop Sci 37: 1317–1325.

    Article  Google Scholar 

  • Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki et al., 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day con-ditions. Plant Cell Physiol 43: 1096–1105.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., & R. Thompson, 1990. Efficiency of marker assisted se-lection in the improvement of quantitative traits. Genetics 124: 743–756.

    PubMed  CAS  Google Scholar 

  • Liu, J., J. Van Eck, B. Cong & S.D. Tanksley, 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS 99: 13302–13306.

    Article  PubMed  CAS  Google Scholar 

  • Manjarrez-Sandoval, P., T.E.J. Carter, D.M. Webb & J.W. Burton, 1997. RFLP genetic similarity estimates and coefficient of parent-age as genetic variance predictors for soybean yield. Crop Sci 37: 698–703.

    Article  Google Scholar 

  • Matsuoka, Y., Y. Vigouroux, M.M. Goodman, J. Sanchez G., E.S. Buckler et al., 2002. A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99: 6080–6084.

    Article  PubMed  CAS  Google Scholar 

  • Melchinger, A.E., 1999. Genetic diversity and heterosis. In: C. J. G. P. S. (Ed.), The Genetics and Exploitation of Heterosis in Crops, pp. 99–118. American Society of Agronomy Crop Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Melchinger, A.E., R.K. Gumber, R.B. Leipert, M. Vuylsteke & M. Kuiper, 1998a. Prediction of testcross means and variances among F3 progenies of F1 crosses from testcross means and genetic dis-tances of their parents in maize. Theor Appl Genet 96: 503–512.

    Article  Google Scholar 

  • Melchinger, A.E., H.F. Utz & C.C. Schon, 1998b. Quantitative trait locus (QTL) mapping using different testers and independent pop-ulation samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.

    PubMed  CAS  Google Scholar 

  • Moreau, L., A. Charcosset & A. Gallais, 2001. Efficiency of marker-assisted selection compared with conventional selection. Ocl-Oleagineux Corps Gras Lipides 8: 496–501.

    Google Scholar 

  • Moreau, L., A. Charcosset, F. Hospital & A. Gallais, 1998. Marker-assisted selection efficiency in populations of finite size. Genetics 148: 1353–1365.

    PubMed  CAS  Google Scholar 

  • Moreau, L., S. Lemarie, A. Charcosset & A. Gallais, 2000. Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40: 329–337.

    Article  Google Scholar 

  • Morgante, M., & F. Salamini, 2003. From plant genomics to breeding practice. Curr Opin Biotechnol 14: 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Nordborg, M., J.O. Borevitz, J. Bergelson, C.C. Berry, J. Chory et al., 2002. The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 30: 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Openshaw, S. & E. Frascaroli, 1997. QTL detection and marker-assisted selection for complex traits in maize. In: Proceedings of 52th Annual Corn and Sorghum Research Conference, ASTA, Washington DC.

    Google Scholar 

  • Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln et al., 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, U.K. 335.

  • Pritchard, J.K., M. Stephens & P. Donnely, 2000a. Inference of op-ulation structure using multilocus genotype data. Genetics 155: 945–959.

    PubMed  CAS  Google Scholar 

  • Pritchard, J.K., M. Stephens, N.A. Rosenberg & P. Donnelly, 2000b. Association mapping in structured populations. Amer J Hum Genet 67: 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Rafalski, A., 2002. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Ragot, M., M. Biasiolli, M.F. Delbut, A. Dell'Orco, L. Malgarini et al., 1994. Marker-assisted back-crossing: a practical example. In: A. Bervillé & M. Tersac (Eds.), Techniques et Utilisations des Marqueurs Mol#x00E9;culaires, pp. 45–56. INRA, Montpellier, France.

    Google Scholar 

  • Ramalingam, J., H.S. Basharat & G. Zhang, 2002. STS and mi-crosatellite marker-assisted selection for bacterial blight resis-tance and waxy genes in rice, Oryza sativa L. Euphytica 127: 255–260.

    Article  CAS  Google Scholar 

  • Rebourg, C., M. Chastanet, B. Gouesnard, C. Welcker, P. Dubreuil et al., 2003. Maize introduction into Europe: The history reviewed in the light of molecular data. Theor Appl Genet 106: 895–903.

    PubMed  CAS  Google Scholar 

  • Remington, D.L., J.M. Thornsberry, Y. Matsuoka, L.M. Wilson, S.R. Whitt et al., 2001. Structure of linkage disequilibrium and pheno-typic associations in the maize genome. PNAS 98: 11479–11484.

    Article  PubMed  CAS  Google Scholar 

  • Reyna, N. & C.H. Sneller, 2001. Evaluation of marker-assisted in-trogression of yield QTL alleles into adapted soybean. Crop Sci 41: 1317–1321.

    Article  Google Scholar 

  • Ribaut, J.M., M. Bänziger, J. Betran, C. Jiang, G.O. Edmeades et al., 2002. Use of molecular markers in plant breeding: Drought toler-ance improvement in tropical maize. In: M.S. Kang (Ed.), Quanti-tative Genetics, Genomics and Plant Breeding, pp. 85–108. CABI Publishing, Oxon New York.

    Google Scholar 

  • Robert, V.J.M., M.A.L. West, S. Inai, A. Caines, L. Arntzen et al., 2001. Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L-esculentum) and evaluation of QTL phenotypic effects. Mol Breeding 8: 217–233.

    Article  CAS  Google Scholar 

  • Romagosa, I., F. Han, S.E. Ullrich, P.M. Hayes & D.M. Wesen-berg, 1999. Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross. Mol Breed-ing 5: 143–152..94

    Article  Google Scholar 

  • Schneider, K.A., M.E. Brothers & J.D. Kelly, 1997. Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37: 51–60.

    Article  CAS  Google Scholar 

  • Schnell, F., 1983. Probleme der elternwahl-ein überblick. In: Ber Arbeitstag 1983. Arbeitsgem Saatzuchtleiter, pp. 1–11. Gumpen-stein, Austria.

    Google Scholar 

  • Servin, B. & F. Hospital, 2002. Optimal positioning of markers to control genetic background in marker-assisted backcrossing. J Heredity 93: 214–217.

    Article  CAS  Google Scholar 

  • Shen, L., B. Courtois, K.L. McNally, S. Robin & Z. Li, 2001. Evalua-tion of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103: 75–83.

    Article  CAS  Google Scholar 

  • Singh, S., J.S. Sidhu, N. Huang, Y. Vikal, Z. Li et al., 2001. Pyramid-ing three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102: 1011–1015.

    Article  CAS  Google Scholar 

  • Tabor, H.K., N.J. Risch & R.M. Myers, 2002. Candidate-gene ap-proaches for studying complex genetic traits: practical consider-ations. Nat Rev Genet 3: 1–7.

    Article  CAS  Google Scholar 

  • Takahashi, Y., A. Shomura, T. Sasaki & M. Yano, 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98: 7922–7927.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D. & J.C. Nelson, 1996. Advanced backcross QTL anal-ysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203.

    Article  Google Scholar 

  • Tar'an, B., T.E. Michaels & K.P. Pauls, 2003. Marker-assisted selec-tion for complex trait in common bean (Phaseolus vulgaris L.) using QTL-based index. Euphytica 130: 423–432.

    Article  Google Scholar 

  • Tenaillon, M.I., M.C. Sawkins, A.D. Long, R.L. Gaut, J.F. Doeb-ley et al., 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). PNAS 98: 9161–9166.

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen et al., 2001. Dwarf8 polymorphisms associate with vari-ation in flowering time. Nat Genet 28: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • van Berloo, R., H. Aalbers, A. Werkman & R.E. Niks, 2001. Re-sistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breeding 8: 187–195.

    Article  CAS  Google Scholar 

  • van Berloo, R. & P. Stam, 1998. Marker-assisted selection in auto-gamous RIL populations: A simulation study. Theor Appl Genet 96: 147–154.

    Article  Google Scholar 

  • Visscher, P.M., C.S. Haley & R. Thompson, 1996. Marker-assisted introgression in backcross breeding programs. Genetics 144: 1923–1932.

    PubMed  CAS  Google Scholar 

  • Whittaker, J.C., C.S. Haley & R. Thompson, 1997. Optimal weight-ing of information in marker-assisted selection. Genet Res 69: 137–144.

    Article  Google Scholar 

  • Willcox, M.C., M.M. Khairallah, D. Bergvinson, J. Crossa, J.A. Deutsch et al., 2002. Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42: 1516–1528.

    Article  Google Scholar 

  • Xie, C.Q. & S.Z. Xu, 1998. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity 80: 489–498.

    Article  PubMed  Google Scholar 

  • Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna et al., 2000. Hd1, a major photoperiod sensitivity quantita-tive trait locus in rice, is closely related to the arabidop-sis flowering time gene CONSTANS. Plant Cell 12: 2473–2483.

    Article  PubMed  CAS  Google Scholar 

  • Yin, X.Y., P. Stam, M.J. Kropff & A. Schapendonk, 2003. Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95: 90–98.

    Article  CAS  Google Scholar 

  • Yousef, G.G. & J.A. Juvik, 2001. Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41: 645–655.

    Article  Google Scholar 

  • Yousef, G.G. & J.A. Juvik, 2002. Enhancement of seedling emer-gence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42: 96–104.

    Article  PubMed  Google Scholar 

  • Zamir, D., 2001. Improving plant breeding with exotic genetic li-braries. Nat Rev Genet 2: 983–989.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, P.H., Y.F. Tan, Y.Q. He, C.G. Xu & Q. Zhang, 2003a Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecu-lar marker-assisted selection. Theor Appl Genet 106: 326–331.

    PubMed  CAS  Google Scholar 

  • Zhou, W.C., F.L. Kolb, G.H. Bai, L.L. Domier, L.K. Boze et al., 2003b Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breeding 122: 40–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charcosset, A., Moreau, L. Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137, 81–94 (2004). https://doi.org/10.1023/B:EUPH.0000040505.65040.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000040505.65040.75

Navigation