Skip to main content
Log in

QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

With the development of molecular markers, dissection of complex quantitative traits by mapping the underlying genetic factors has become a major research area in plant breeding. Here, we report results from a vast QTL mapping experiment in maize with testcrosses of N= 976 F4:5 lines evaluated in E= 16 environments. Although the number of detected QTL confirmed the infinitesimal model of quantitative genetics (e.g., 30 QTL detected with LOD ≥ 2.5 for plant height, explaining p= 61% of the genetic variance), cross validation (CV) still revealed an upward bias of about 10% in p. With smaller values of N (122, 244, 488) and E (2, 4), the number of detected QTL decreased, but the estimates of p remained almost the same due to a tremendous increase in the bias. This illustrates that QTL effects obtained from smaller sample sizes are usually highly inflated, leading to an overly optimistic assessment of the prospects of MAS. Moreover, inferences about the genetic architecture (number of QTL and their effects) of complex traits cannot be achieved reliably with smaller sample sizes. Based on simulations, we conclude that CV and one method of bootstrapping (BS) performed well with regard to yielding realistic estimates of p. In addition, we briefly review progress in new biometric methods and approaches to QTL mapping in plants including Bayesian methods that show great promise to overcome the present limitations of QTL mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, D.B., J.R. Fernandez, H. Moonseong, Z. Shankuan & C. Etzel, 2002. Bias in estimates of quantitative-trait-locus effect in genome scans: Demonstration of the phenomenon and a method-of-moments procedure for reducing bias. Am J Hum Genet 70: 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Asins, M.J., 2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121: 281–291.

    Article  Google Scholar 

  • Ball, R.D., 2001. Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion. Genetics 59: 1351–1364.

    Google Scholar 

  • Beavis, W.D., 1998. QTL analyses: Power, precision and accuracy. In: A.H. Paterson (Ed.), Molecular Dissection of Complex Traits, pp. 145–162. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Bennewitz, J., N. Reinsch & E. Kalm, 2002. Improved confidence intervals in quantitative trait loci mapping by permutation boot strapping. Genetics 160: 1673–1686.

    PubMed  CAS  Google Scholar 

  • Boer, M.P., C.J. V ter Braak & R.C. Jansen, 2002. A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 162: 951–960.

    PubMed  CAS  Google Scholar 

  • Breiman, L. & P. Spector, 1992. Submodel selection and evaluation in regression. The X-random case. Int Stat Rev 60: 291–319.

    Article  Google Scholar 

  • Charcosset, A. & A. Gallais, 1996. Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor Appl Genet 93: 1193–1201.

    Article  Google Scholar 

  • Doerge, R.W., 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Doerge, R.W. & J. Churchill, 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294.

    PubMed  CAS  Google Scholar 

  • Efron, B., 1983. Estimating the error rate of a prediction rule: Improvement on cross-validation. J Amer Statist Ass 78: 316–330.

    Article  Google Scholar 

  • Efron, B. & R.J. Tibshirani, 1993. An Introduction to the Bootstrap. Chapman and Hall, London.

    Google Scholar 

  • Fisher, R.A., 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edin 52: 399–433.

    Google Scholar 

  • Georges, M., D. Nielsen, M. Mackinnon, A. Mishra & R. Okimoto, 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139: 07–920.

    Google Scholar 

  • Göring, H.H.H., J.D. Terwilliger & J. Blangero, 2001. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69: 1357–1369.

    Article  PubMed  Google Scholar 

  • Hackett, C.A., 2002. Statistical methods for QTL mapping in cereals. Plant Mol Biol 48: 585–599.

    Article  PubMed  CAS  Google Scholar 

  • Hjorth, J.S.U., 1994. Computer Intensive Statistical Methods. Validation Model Selection and Bootstrap. Chapman and Hall, London.

    Google Scholar 

  • Jannink, J.-L., M.C. Bink & R.C. Jansen, 2001. Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.C., 2001. Quantitative trait loci in inbred lines. pp. 567–597. In: D.J. Balding, M. Bishop & G. Gannings. (Ed.), Handbook of Statistical Genetics. Wiley, New York.

    Google Scholar 

  • Jansen, R.C., J.-L. Jannink & W.D. Beavis, 2003. Mapping quantitative trait loci in plant breeding populations: Use of parental haplotype sharing. Crop Sci 43: 829–834.

    Article  CAS  Google Scholar 

  • Jiang, C. & Z.-B. Zeng, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127.

    PubMed  CAS  Google Scholar 

  • Kao, C.-H., Z.-B. Zeng & R.D. Teasdale, 1999. Multiple interval mapping for quantitative trait loci. Genetics 152: 1203–1216.

    PubMed  CAS  Google Scholar 

  • Knapp, S.J. & W. C. Bridges, 1990. Using molecular markers to estimate quantitative trait locus parameters: Power and genetic variances for unreplicated and replicated progeny. Genetics 126: 769–777.

    PubMed  CAS  Google Scholar 

  • Lebreton, C.M. & P.M. Visscher, 1998. Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: Conditioning on the genetic model. Genetics 148: 525–535.

    PubMed  CAS  Google Scholar 

  • Melchinger, A.E., H.F. Utz & C.C. Schön, 1998. QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.

    PubMed  CAS  Google Scholar 

  • Melchinger, A.E., H.F. Utz & C.C. Schön, 2000. From Mendel to Fisher. The power and limits of QTL mapping for quantitative traits. Vortr Pflanzenzüchtg 48: 132–142.

    Google Scholar 

  • Meuwissen, T.H.E., B.J. Hayes & M.E. Goddard, 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.

    PubMed  CAS  Google Scholar 

  • Moreau, L., A. Charcosset, F. Hospital & A. Gallais, 1998. Marker-assisted selection efficiency in populations of finite size. Genetics 148: 1353–1365.

    PubMed  CAS  Google Scholar 

  • Schön, C.C., H.F. Utz, S. Groh, B. Truberg, S. Openshaw & A.E. Melchinger, 2004. QTL mapping based on resampling in a vast maize testcross experiment confirms the infinitesimal model of quantitative genetics for complex traits. Genetics 167: 485–498.

    Article  PubMed  Google Scholar 

  • Sen, S. & G.A. Churchill, 2001. A statistical framework for quantitative trait mapping. Genetics 159: 371–387.

    PubMed  CAS  Google Scholar 

  • Shao, J., 1996. Bootstrap model selection. J Amer Statist Ass 91: 655–665.

    Article  Google Scholar 

  • Sillanpää, M.J. & J. Corander, 2002. Model choice in gene mapping: What and why. Trends in Genetics 18: 301–307.

    Article  PubMed  Google Scholar 

  • Utz, H.F. & A.E. Melchinger, 1994. Comparison of different approaches to interval mapping of quantitative trait loci. In: J.W. Van Ooijen and J. Jansen (Eds.), Biometrics in Plant Breeding: Applications of Molecular Markers. Proceedings of the 9th Meeting of the EUCARPIA Section Biometrics in Plant Breeding, 6–8 July, 1994, Wageningen, The Netherlands, pp. 195–204.

  • Utz, H.F. & A.E. Melchinger, 1996. PLABQTL: A program for composite interval mapping of QTL. J Quant Trait Loci 2(1).

  • Utz, H.F., A.E. Melchinger & C.C. Schön, 2000. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154: 1839–1849.

    PubMed  Google Scholar 

  • Walsh, B., 2001. Quantitative Genetics in the age of genomics. Theoret Pop Biol 59: 175–184.

    Article  CAS  Google Scholar 

  • Xu, S., 2003. Estimating polygenic effects using markers of the entire genome. Genetics 163: 789–801.

    PubMed  CAS  Google Scholar 

  • Yi, N. & S. Xu, 2001. Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics 157: 1759–1771.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchinger, A., Utz, H. & Schön, C. QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica 137, 1–11 (2004). https://doi.org/10.1023/B:EUPH.0000040498.48379.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000040498.48379.68

Navigation