Estimation of Soil Carbon Gains Upon Improved Management within Croplands and Grasslands of Africa

Abstract

Many agro(eco)systems in Africa have been degraded as a result of past disturbances, including deforestation, overgrazing, and over exploitation. These systems can be managed to reduce carbon emissions and increase carbon sinks in vegetation and soil. The scope for soil organic carbon gains from improved management and restoration within degraded and non-degraded croplands and grasslands in Africa is estimated at 20–43 Tg C year−1, assuming that 'best' management practices can be introduced on 20% of croplands and 10% of grasslands. Under the assumption that new steady state levels will be reached after 25 years of sustained management, this would correspond with a mitigation potential of 4–9% of annual CO2 emissions in Africa. The mechanisms that are being put in place to implement the Kyoto Protocol - through C emission trading - and prevailing agricultural policies will largely determine whether farmers can engage in activities that enhance C sequestration in Africa. Mitigation of climate change by increased carbon sequestration in the soil appears particularly useful when addressed in combination with other pressing regional challenges that affect the livelihood of the people, such as combating land degradation and ensuring food security, while at the same time curtailing global anthropogenic emissions.

This is a preview of subscription content, access via your institution.

References

  1. Alcamo, J., Kreileman, E., Krol Leemans, R., Bollen, J., van Minnen, J., Schaeffer, M., Toet, S. and de Vries, B.: 1998, 'Global modelling of environmental change: an overview of IMAGE 2.1', in J. Alcamo, R., Leemans, and E. Kreileman (eds.), Global Change Scenarios of the 21st Century. Results from the IMAGE 2.1 Model, Elsevier, Amsterdam, pp. 19–21.

    Google Scholar 

  2. Barbier, E.B.: 2000, 'The economic linkages between rural poverty and land degradation: some evidence from Africa', Agriculture Ecosystem and Environment 82, 355–370.

    Article  Google Scholar 

  3. Batjes, N.H.: 1996, 'Total carbon and nitrogen in the soils of the world', European Journal of Soil Sciences 47, 151–163.

    CAS  Article  Google Scholar 

  4. Batjes, N.H.: 1997, 'A world data set of derived soil properties by FAO-UNESCO soil unit for global modelling', Soil Use and Management 13, 9–16.

    Google Scholar 

  5. Batjes, N.H.: 1999,Management options for Reducing CO2 Concentrations in the Atmosphere by Increasing Carbon Sequestration in the Soil, NRP Report No. 410-200-031, Bilthoven, Dutch National Research Programme on Global Air Pollution and Climate Change, 114 pp.

    Google Scholar 

  6. Batjes, N.H.: 2001, 'Options for carbon sequestration in west African soils: an exploratory study with special focus on Senegal', Land Degradation and Development 12, 131–142.

    Article  Google Scholar 

  7. Batjes, N.H. and Bouwman, A.F.: 1989, 'JAMPLES a computerized land evaluation system for Jamaica', in J. Bouma and A.K. Bregt (eds.), Land Qualities in Space and Time, Wageningen, PUDOC, pp. 257–260.

    Google Scholar 

  8. Bazzaz, F. and Sombroek,W. (eds.): 1996, Global Climate Change and Agricultural Production-Direct and Indirect Effects of Changing Hydrological, Pedological and Plant Physiological Processes, Chichester, FAO and John Wiley & Sons, 358 pp.

    Google Scholar 

  9. Boden, T.A., Kaiser, D.P., Sepanski, R.J. and Stoss, F.W. (eds.): 1994, 'Trends '93: a compendium of data on global change', in G.M. Logsdon (ed.), Oak Ridge, Carbon Dioxide Information Analysis Center.

    Google Scholar 

  10. Bouwman, A.F., Derwent, R.G. and Dentener, F.J.: 1999, 'Towards reliable global bottom-up estimates of temporal and spatial patterns of emissions of trace gases and aerosols from land-use related and natural resources', in A.F. Bouwman (ed.), Approaches to Scaling of Trace Gas Fluxes in Ecosystems, Amsterdam, Elsevier, pp. 3–26.

    Google Scholar 

  11. Breman, H. and Sosoko, K.: 1998. L' Intensification agricole au Sahel. Paris, Editions Karthala.

    Google Scholar 

  12. Bruce, J.P., Frome, M., Haites, E., Janzen, H., Lal, R. and Paustian, K.: 1999, 'Carbon sequestration in soils', Journal of Soil and Water Conservation 54, 382–389.

    Google Scholar 

  13. Cramer, W. and Fischer, A.: 1997, 'Data requirements for global terrestrial ecosystem modelling', in B. Walker, and W. Steffen (eds.), Global Change and Terrestrial Ecosystems, Cambridge, Cambridge University Press, pp. 529–565.

    Google Scholar 

  14. de Pauw, E., Nachtergaele, F.O., Antoine, J., Fischer, G. and Van Velthuizen, H.T.: 1996, 'A provisional world climatic resource inventory based on the length-of-growing-period concept', in N.H. Batjes, J.H. Kauffman and O.C. Spaargaren (eds.), National Soil Reference Collections and Databases (NASREC),Wageningen, ISRIC, pp. 30–43.

    Google Scholar 

  15. FAO: 1993,World Soil Resources: An Explanatory Note on theFAOWorld Soil Resources map at 1:25,000,000 Scale, World Soil Resources Report 66 (rev. 1), Rome, Food and Agriculture Organization of the United Nations, 61 pp.

    Google Scholar 

  16. FAO: 1996, Food Production and Environmental Impact, Technical Background Document 11 (http://www.fao.org/wfs), Rome, Food and Agriculture Organization of the United Nations.

    Google Scholar 

  17. FAO: 2001a, Soil Fertility Management in Support of Food Security in Sub-Saharan Africa, Rome, Food and Agriculture Organization of the United Nations, 55 pp.

    Google Scholar 

  18. FAO: 2001b, Soil Carbon Sequestration for Improved Land Management, World Soil Resources Report 96, Rome, Food and Agriculture Organization of the United Nations, Rome, 58 pp.

    Google Scholar 

  19. IFDC: 1997, Framework for National Soil Fertility Improvement Action Plans, Lome, International Fertilizer Development Center, 10 pp.

    Google Scholar 

  20. IMAGE-team: 2001, The IMAGE 2.2 Implementation of the SRES Scenarios. A Comprehensive Analysis of Emissions, Climate Change and Impacts in the 21st Century, CD-ROMpublication 481508018, Bilthoven, National Institute for Public Health and the Environment (RIVM).

    Google Scholar 

  21. Izac, A.M.N.: 1997. Developing policies for soil carbon management in tropical regions, Geoderma 79, 261–276.

    CAS  Article  Google Scholar 

  22. Jastrow, J.D. and Miller, R.M.: 1997, 'Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations', in R. Lal, J.M. Kimble, R.F. Follet and B.A. Stewart (eds.), Soil Processes and the Carbon Cycle, Boca Raton, CRC Press, pp. 207–223.

    Google Scholar 

  23. Koning, N., Heerink, N. and Kauffman, S.: 2001, 'Food insecurity, soil degradation and agricultural markets in West Africa: why current policy approaches fail', Oxford Development Stud. 29, 189–207.

    Article  Google Scholar 

  24. Lal, R.: 1999, 'Global carbon pools and fluxes and the impact of agricultural intensification and judicious land use', in R. Dudal (ed). Prevention of Land Degradation, Enhancement of Carbon Sequestration and Conservation of Biodiversity Through Land use Change and Sustainable land Management with a Focus on Latin America and the Caribbean, Rome, Food and Agriculture Organization of the United Nations, pp. 79–94.

    Google Scholar 

  25. Lal, R., Kimble, J.M., Follet, R.F. and Cole, C.V. (eds.): 1998, 'The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect', Chelsea, MI, Ann Arbor Press, pp. 128.

    Google Scholar 

  26. Oldeman, L.R.: 1994, 'The global extent of soil degradation', in D.J. Greenland and I. Szabolcs (eds.), Soil Resilience and Sustainable land Use, Wallingford, CAB Int., pp. 99–118.

    Google Scholar 

  27. Oldeman, L.R., Hakkeling, R.T.A. and Sombroek, W.G.: 1991, World Map of the Status of Human-Induced Soil Degradation: An explanatory Note (rev. ed.), Wageningen, UNEP and ISRIC, 35 pp (with maps).

    Google Scholar 

  28. Paustian, K., Levine, E.R., Post, W.M. and Ryzhova, I.M.: 1997. The use of models to integrate information and understanding of soil C at the regional scale. Geoderma 79, 227–260.

    CAS  Article  Google Scholar 

  29. Paustian, K., Andrèn, O., Janzen, H.H., Lal, R., Smith, P., Tain, G., Tiessen, H., van Noordwijk, M. and Woomer, P.L.: 1998, 'Agricultural soils as a sink to mitigate CO2 emissions', Soil Use and Management 13, 230–244.

    Google Scholar 

  30. Pieri, C.: 1989, Fertilité des terres de savanes-Bilan de trente ans de recherche et de développement agricoles au sud du Sahara, Paris, Minist`ere de la Coopération et du Développement and CIRAD-IRAT, 444 pp.

    Google Scholar 

  31. Ringius, L., 2002. 'Soil carbon sequestration and the CDM: opportunities and challenges for Africa', Climatic Change 154, 471–495.

    Article  Google Scholar 

  32. Sampson, R.N. and Scholes, R.J.: 2000, 'Additional human-induced activities-Article 3.4', in R.T.Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J.Verardo and D.J. Dokken (eds.), Land Use, Land-Use Change, and Forestry, Cambridge, Published for the Intergovernmental Panel on Climate Change by Cambridge University Press, pp. 183–281.

    Google Scholar 

  33. Schlesinger, W.H.: 2000. 'Carbon sequestration in soils: some cautions amidst optimism', Agriculture Ecosystems and Environment 82, 121–127.

    CAS  Article  Google Scholar 

  34. Scholes, M. and Andreae, M.O.: 2000, 'Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere', Ambio 29, 23–29.

    Google Scholar 

  35. Smaling, E.M.A., Fresco, L.O. and De Jager, A.: 1996, 'Classifying, monitoring and improving soil nutrient stocks and flows in African agriculture', Ambio 25, 492–496.

    Google Scholar 

  36. Sokona, Y., Humphreys, S. and Thomas, J.-P.: 1998, 'What prosects for Africa?' in J. Goldemberg (ed.), The Clean Development Mechanism: Issues and Options, New York, United Nations Development Programme, pp. 109-118.

  37. UNEP: 1992, World Atlas of Desertification, London, United Nations Environment Programme and Edward Arnold, 69 pp.

    Google Scholar 

  38. UNEP: 1997, 'Africa', in V. Vandeweerd, M. Cheatle, B. Henricksen, M. Schomaker, M. Seki, and K. Zahedi (eds.), Global Environmental Outlook, Nairobi, Oxford University Press and United Nations Environment Programme, pp. 25–41.

    Google Scholar 

  39. UNFCCC: 2001, Report of the Conference of the Parties on its Seventh Session (Marrakesh, 29 October-10 November 2001), Report FCCC/CP/2001/13/add.1, United Nations Framework Convention on Climate Change [http://unfccc.int/resource/docs/cop7/13a01.pdf].

  40. Vlek, P.L.G.: 1995, 'The soil and its artisans in sub-Saharan Africa', Geoderma 67, 165–170.

    Article  Google Scholar 

  41. WBBGU: 1998, 'Das Kyoto-Protkoll', in Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschrift oder Rückschlag für den globalen Umweltschutz?, Bremerhaven, Wissenschaftlicher Beirat der Bundesregierung Globale Umwelveründerungen, pp. 56–66.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Batjes, N.H. Estimation of Soil Carbon Gains Upon Improved Management within Croplands and Grasslands of Africa. Environment, Development and Sustainability 6, 133–143 (2004). https://doi.org/10.1023/B:ENVI.0000003633.14591.fd

Download citation

  • Africa
  • carbon sequestration
  • croplands
  • grasslands
  • soil degradation
  • soil management
  • soil organic matter